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Abstract

Errors in map-making tasks using computer
vision are sparse. We demonstrate this by
considering the construction of digital ele-
vation models that employ stereo matching
algorithms to triangulate real-world points.
This sparsity, coupled with a geometric the-
ory of errors recently developed by the au-
thors, allows for autonomous agents to cal-
culate their own precision independently of
ground truth. We connect these develop-
ments with recent advances in the mathemat-
ics of sparse signal reconstruction or com-
pressed sensing. The theory presented here
extends the autonomy of 3-D model recon-
structions discovered in the 1990s to their er-
rors.

1. Introduction

Autonomy of robots or intelligent sensors depends
on developing algorithms that can assess their own
performance independent of ground truth. Consider
an Aerial Mapping Appliance (AMA) that must con-
struct a map or 3-D model of the world based on pho-
tographs. Researchers in computer vision discovered
in the 1990s that a faithful 3-D model of an imaged
scene was possible without any knowledge of the po-
sitions, or orientations of the camera that took the
photographs (Beardsley et al., 1996). This reconstruc-
tion is even possible without knowing the internal pa-
rameters of the camera (Pollefeys et al., 1999). The
geometry of multiple images contains all the necessary
information to do this reconstruction. This indepen-
dence of 3-D model reconstruction from ground truth
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(in this case, camera positions, etc.) raises the possi-
bility that the errors in the reconstruction can also be
recovered autonomously by an intelligent agent such
as the AMA.

Autonomous error estimation for 3-D model recon-
struction was recently demonstrated to be possible by
the authors (Corrada-Emmanuel et al., 2007; Corrada-
Emmanuel & Schultz, 2008). The theory depends on
making a distinction between accuracy and precision.
Knowledge of accuracy is not possible without ground
truth. Precision can be estimated autonomously. This
paper will demonstrate that autonomous precision es-
timation is also related to the mathematics of sparse
signal reconstruction or compressed sensing (Donoho,
2006a). The precision errors of measurements, not just
the measurements, are sparse themselves. This spar-
sity is the key to their reconstruction.

2. The Distinction between Geometric
Accuracy and Precision

The concepts of accuracy and precision are well known
to all scientists. The Machine Learning community
knows these concepts as bias and variance (Bishop,
2007). Bias refers to how far an estimate is from the
true value. Variance captures how noisy that estimate
is given the measurements used to compute it. Our
meaning of accuracy and precision in 3-D models is
analogous to bias and variance but not equivalent. Our
definitions are geometrical in nature.

Imagine that one had a set of 3-D models of a scene.
Furthermore, along with the models one also has the
ground truth or exact locations of points in the scene.
The total error of the models can be defined as∑

models

∑
points

[~xmodel(point)− ~xtrue(point)]2 (1)

We can decrease the total error in the models by ap-
plying a global transformation to all the models. For
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example, the models may be systematically off by 1
meter in some direction. The geometric precision of
the models is defined as the minimum possible total
error after application of a global transformation to
all the models:

min
T

∑
models

∑
points

[T (~xmodel(point))− ~xtrue(point)]2 .

(2)
The geometric accuracy is defined as difference be-
tween the total error and the geometric precision.

We describe some simple examples to clarify these def-
initions. Imagine a 3-D model reconstruction that is
merely a translated example of the real world, i.e. all
locations are off by 1 meter to the North. The recon-
struction has an accuracy error of 1 meter and zero
precision error. A model with zero accuracy error but
some precision error can be created by taking a per-
fect reconstruction and individually randomizing the
elevation of the reconstruction with zero mean.

The concept of geometric accuracy can thus be cap-
tured by a successive set of transformations that the
reader may want to view as encompassing the usual
hierarchy of projective, affine and euclidean transfor-
mations (Hartley & Zisserman, 2000; Faugeras et al.,
2001) or some subset of them. The rest of this paper
will use the words accuracy and precision as shorthand
for these geometric definitions.

2.1. Autonomous Elevation Difference
Equations and Geometric Precision

Our central claim is that precision can be estimated
autonomously even as the accuracy of the models is
completely unknown. Autonomous geometric preci-
sion error estimation is possible by creating quantities
that are invariant under global accuracy transforma-
tions. In this paper we will consider one such quantity
that is useful for characterizing the precision errors in
DEMs and has been discussed in our previous papers
(Corrada-Emmanuel et al., 2007):

∆P,Q(x, y) =
1
P

P∑
i=1

Zi −
1
Q

Q∑
j=1

Zj (3)

=
1
P

P∑
i=1

δi −
1
Q

Q∑
j=1

δj , (4)

where the integers P and Q are between 1 and the
number of models being compared, 1 ≤ P ≤ M and
1 ≤ Q ≤ M . A DEM i is a collection of elevation
postings at different (x,y) locations, {Zi(x, y)}. The
precision error in each posting is denoted by δi(x, y),

so in general one can write

Zi(x, y) = Ztrue(x, y) + δi(x, y). (5)

By picking the integers P and Q less than or equal
to the number of DEM models, we guarantee that the
true value of the elevation cancels out at each posting
since

1
P
∗ (P ∗ Ztrue)−

1
Q
∗ (Q ∗ Ztrue) = 0 (6)

so that equation 4 follows from equation 3.

By considering all possible values P and Q one can
find a set of linearly independent equations for the el-
evation precision errors. We call this independent set
the autonomous difference equations. Note that these
equations are not being used to construct a better esti-
mate of the true elevation by performing some simple
averaging over them. Their sole purpose is to probe
the errors in the reconstructed elevations. More gen-
eral expressions that take into account x and y posi-
tion errors can be constructed but we defer discussion
of these to future papers.

Equation 3 can be calculated from the observable ele-
vations. The task of the autonomous agent is to esti-
mate the precision errors {δi} in equation 4 and how
they are correlated with each other. Once the agent
knows these correlations, the precision error of a fused
estimated can be decreased while possibly increasing
its accuracy error. This may be a suitable action to
take since in many computer vision tasks accuracy is
cheaper to fix than precision, a point we clarify in our
concluding remarks.

3. The Covariance Matrix for Precision
Errors

An AMA or robot on a mapping mission will not know
beforehand what errors it will make during its activi-
ties. Sensors could systematically malfunction. Light-
ing conditions may be unfavorable at certain viewing
angles. These and other factors will inevitably mean
that repeated measurements of the same scene will be
partly correlated, or their precision may vary widely.
How should the 3-D models obtained from different
vantage points be fused? How fast is the precision er-
ror in the reconstructions decreasing as a function of
the collected images? Has the AMA attained a desired
precision level and therefore completed its mission?
Autonomous mission planning by robots requires an-
swers to these questions.

We argue that a principled approach to answering
these questions must rely on an autonomous estima-
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tion of the covariance matrix of the 3-D models. Hav-
ing multiple measurements whose errors are strongly
correlated is not much better than a single measure-
ment, for example. Knowing the covariance matrix
would allow the agent to discard bad data, understand
its rate of error decrease as a function of data collec-
tion, and provide a fused estimate that monotonically
improves with time.

The covariance matrix for DEM errors is composed
of entries of the form 〈δiδj〉 − 〈δi〉 〈δj〉. For ease of
discussion, we will assume that the precision error has
been de-meaned so 〈δi〉 = 0 for all i, so the covariance
matrix is equivalent to 〈δiδj〉 in this paper.

It is impossible, generally, to calculate this covariance
matrix given a set of measurements. We explain this
fully by constructing a linear algebra system for the
covariance matrix based on the autonomous difference
equations (eqs. 3 and 4) to demonstrate that it defines
an under-determined system – one where we have less
equations that unknowns.

3.1. An Under-Determined Linear Algebra
System for the Covariance Matrix Entries

Squaring the autonomous difference equations and av-
eraging over all the posting locations (x, y) gives a set
of linear equations for all the entries in the covariance
matrix. We denote this system by

S = Φ∆. (7)

The vector S is the “signal” of the DEM precision
errors. Its components are calculated using equation
3. The matrix Φ consists of the rational fractions that
come from expanding the square of equation 4. The
vector ∆ are the entries < δiδj > of the covariance
matrix that we want to estimate.

Equation 7 defines an under-determined linear sys-
tem because the number of independent entries in
the covariance matrix is M(M + 1)/2 given M mod-
els (the matrix is symmetric). The number of inde-
pendent equations that can be constructed from the
autonomous difference equations is equal to M(M +
1)/2 − M . Therefore, the system is always under-
determined by M equations.

3.2. The Correlated-Pair Error Model

This limitation was circumvented in our earlier papers
(Corrada-Emmanuel et al., 2007) by assuming that the

covariance matrix had the simple form
∗ ∗ 0 0 . . .
∗ ∗ 0 0 . . .
0 0 ∗ ∗ . . .
0 0 ∗ ∗ . . .
...

...
...

...
. . .

 (8)

The block-diagonal shape came from our production
of two DEMs from every photographic pair, a practice
that differs from the usual photogrammetric conven-
tion of producing a single DEM from a photographic
pair. We assumed that only the two DEMs from
the same photographic pair were correlated with each
other. These correlated-pair DEMs gave rise to the
block-diagonal form of the covariance matrix. In ef-
fect, we assumed that the covariance matrix was sparse
since this correlated-pair model only requires n+ n/2
non-zero terms to be estimated for the covariance ma-
trix.

3.2.1. Asymmetry in Computer Vision Stereo
Matching

The reason one can produce two different DEMs
from two photographs is that stereo matching algo-
rithms may not be perfectly symmetric in their out-
put (Brown et al., 2003). This means that a DEM
produced by matching image A to image B, which we
denote by A → B, will not lead to the same DEM
as doing B → A. Of course, the resulting DEM pair
(A→ B, B → A) is highly correlated. The correlated-
pair error model in equation 8 is meant to capture
this unknown, but possibly large, cross-correlation be-
tween the errors in the pair. One can readily calculate
that this block-diagonal error model allows one to cal-
culate the precision error exactly whenever three or
more photographs overlap on the same scene.

4. Sparsity of Geometric Precision
Error

As useful as the correlated-pair error model may be in
certain circumstances it is a model and therefore can-
not form the foundation of a robust process for error
estimation. It is conceivable that DEMs from unre-
lated photographs could become correlated in their er-
rors due to environmental factors or even instrument
malfunction. A robust estimation of the covariance
matrix should not depend on any assumptions of how
DEMs are correlated.

Recent developments in the mathematics of sparse
signal reconstruction or compressed sensing (Donoho,
2006a) offer us a mathematical procedure to deal with
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this situation. During a mapping mission photographs
taken from different viewing positions and orienta-
tions will lead to mapping errors that are uncorrelated
but occasionally may have strong correlations between
them. We just do not know a priori which DEMs will
be correlated with each other, only that these cross-
correlations will be sparse.

As we noted in section 3.1, the linear system is at
the margin of being completely determined being shy
by just M equations. If the covariance matrix was
sparse enough in the sense that on the order of M
independent entries were zero, the estimation would
be robust. We can express this condition by dividing
the number of equations we have (M(M + 1)/2−M)
by the number we need (M(M + 1)/2)

1− 2
M + 1

. (9)

As the number of models increases, this fraction be-
comes increasingly near to one – the condition for be-
ing well-determined.

We hypothesize that given enough models (M →∞),
any experimental situation can be driven into a sparse
regime for the precision error covariance matrix. Note
that we are not talking about sparsity of the models
themselves, but of the correlations between their pre-
cision errors.

The under-determined linear system 7 can be solved
by using the `1-minimization technique advocated in
the compressed sensing literature (Donoho, 2006b)

min ||∆||1 subject to S = Φ∆. (10)

This problem can be solved as a convex optimization
problem (Donoho, 2006b) by recasting it as the equiv-
alent linear program:

min
∑

i

ui subject to (11)

ui + ∆i ≥ 0 (12)
ui −∆i ≥ 0 (13)
Φ∆ = S (14)

In the experimental section of the paper we will show
that this approach reconstructs a covariance matrix for
the precision errors that is very close to the correlated-
pair model (eq. 8). Some off-diagonal terms hypoth-
esized to be zero are about 5 times smaller than the
in-pair cross correlation. We emphasize that this spar-
sity of errors hypothesis is an experimental assertion.
No mathematical proof can be given that this spar-
sity condition can be met. The applicability of the

assertion is based on the experimental realization of
the AMA and the features of the terrain. A device
built with stable imaging sensors of high quality that
is mapping a reasonably static terrain would be a good
candidate for a suitable condition that meets our spar-
sity assumption.

5. More Data Means Higher Resolution
Error Maps

The name compressed sensing comes from the realiza-
tion that sparsity implies a low-dimensional or com-
pressible signal. If pictures of a natural scene taken
with a n × n CCD can always be compressed, why
take n2 measurements? The imaging of the scene can
be compressed by using less pixels and then recon-
structed with an under-determined linear system. This
has been dramatically demonstrated by the Rice Uni-
versity one-pixel camera (Wakin et al., 2006). About
1,000 measurements with a single pixel reproduced im-
ages captured by a 4,000 pixel CCD. Compressed sens-
ing implies that we are wasting effort by taking too
many measurements.

The error theory presented here gives a different per-
spective on this issue. Yes, reconstructing a 3-D model
of the world can be done with less measurements.
However, errors are an important aspect of all mea-
surements. How confident can we be of any particular
reconstruction? The only way to understand this is to
produce not just maps of the territory that is being
mapped, i.e. DEMs, but to also produce error maps
of the same territory. The procedure for precision er-
ror estimation depends on averaging over all postings
that a collection of DEMs have in common. Sparsity
is only present after this averaging. The error map
therefore has a much lower resolution than the DEM
itself. Multiple measurements are needed to increase
the resolution of this error map. In this view, no mea-
surement is ever wasted – it leads to higher resolution
in the error map of the measurements.

This suggests that the resolution of the error map
should be studied by decreasing the map area that
is used to create the average covariance matrix of the
precision errors. As the averaging area is diminished,
various cross-correlations between different DEMs will
start to turn on. At some point, the number of these
off-diagonal terms will be large enough to violate the
condition of sparsity and the resolution limit of the er-
ror map would be reached. This resolution limit may
vary across the mapped area and would naturally de-
pend on the particular dataset. This phenomenon will
be demonstrated in the experimental section.
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(a) Twenty-Nine Palms correlated-
pair model covariance

(b) Twenty-Nine Palms `1 minimiza-
tion covariance

(c) Duke Forest covariance

Figure 1. Comparison of the covariance matrix obtained with `1-minimization versus that obtained by using the correlated-
pair error model. All values are in units of m2. Blue represents positive values, red negative values. The hue scale for
figures (a) and (b) is normalized so that a value of 0.12 m2 results in a completely saturated color pixel. Figure (c) is
normalized with 2.5 m2.

6. Experimental Results

We demonstrate the formalism for sparse precision er-
ror estimation by using a set of four aerial images taken
of a desert terrain in the Twenty-Nine Palms region
in California, USA. The images have been arbitrarily
labeled as {A,B,C,D}. Four photographs allow us
to produce 4*3=12 DEMs from all possible matching
chains of the form i → j. A blunder removal pro-
cess, however, automatically identified that two of the
DEMs ( B → D, and D → B) differed in their eleva-
tion estimates by more than one meter for all postings.
This pair was excluded from our calculations so the re-
sults presented here involve the remaining 10 DEMs.

6.1. Random Reconstructions via
`1-Minimization

For 10 DEMs there are on the order of fifty thousand
ways to write equation 4. The number of indepen-
dent equations in this set is 45. An independent set
selected from all possible permutations of the differ-
ence equations leads to a different reconstruction ma-
trix Φ. To carry out the `1-minimization estimate of
the 10x10 covariance matrix for the DEMs, we ran-
domly selected ten different linearly independent sets
and their corresponding Φ matrices. This was done
to study the numerical stability of the reconstruction
procedure. The statistical average was done over an
overlap region of the DEMS that spanned the postings
500 to 1500 where 2000 by 2000 was the original size of
the individual DEMs. This was done to exclude edge
effects and increase the density of postings on which
all DEMs gave an elevation estimate. Only postings

for which we had a full 10 measurements were used.
The number of postings was equal to 940,010 out of
a possible million. Each posting represents an area of
(0.38 m)2.

The reconstruction of the covariance matrix is shown
in figure 1(b). The covariance matrix is presented as a
10x10 pixel image. For comparison, the covariance ma-
trix reconstructed with the correlated-pair error model
is shown in figure 1(a). No numerically significant vari-
ation in the reconstructed covariance matrix was ob-
served with 10 randomly selected Φ matrices so a single
figure is sufficient to summarize the results. Note that
about 12 entries in the covariance matrix are practi-
cally zero – two more than the 10 entries required to
define a well-determined linear system.

The `1-minimization procedure also ascribes most
of the cross-correlations to the DEMs that come
from asymmetrically matching the same pair of pho-
tographs. In addition, the sparse reconstruction has
discovered that some of the DEMs are negatively cor-
related.

Is this error reconstruction correct? At this time we
can point to its self-consistent character as strong evi-
dence for its correctness. Neither the autonomous ele-
vation difference equations or the `1-minimization pro-
cedure assume that certain DEMs are strongly corre-
lated. Yet the empirically reconstructed matrix clearly
shows that the 10 DEMs have a strong 5-pair structure
exemplified by the block-diagonal structure. The re-
construction has ‘discovered’ that we used DEMs from
asymmetric matching pairs.

Another self-consistent feature of the reconstruction is
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that the more precise a DEM is, the smaller its cross-
correlation with its asymmetric pair becomes. This is
a behavior that we would expect from a system that
is producing increasingly precise estimates.

6.1.1. Duke Forest DEMs

The Twenty-Nine Palms data, just discussed, is ex-
tremely high quality. The images were taken with a
high-quality photogrammetric instrument. To confirm
that precision errors can be recovered in more noisy
data, we studied a series of aerial photographs of a
forest canopy in the Duke Forest, NC taken with an
off-the-shelf digital camera.

We randomly selected a track of images and picked
four consecutive images. The images where multi-band
and we chose the near-ir and green bands. The combi-
nation of bands and asymmetric pair matches resulted
in twenty DEMs. The recovered precision error co-
variance matrix is shown in Figure 1(c). The recovery
is similar to that for the Twenty-Nine Palms data, in
that the highly-correlated pairs were discovered once
again. As befits the noisier data set, the precision er-
ror estimated is ≈ 2.0 m2 versus the 0.1 m2 value for
the Twenty-Nine Palms images.

6.2. Horizontal Resolution of the Precision
Error Covariance Matrix

The self-consistent character of the reconstruction can
be exploited further. The linear program that recov-
ers the error has as side constraints that the diagonal
terms of the covariance matrix have to be positive, a
required property for the

〈
δ2i
〉

terms. To keep the re-
construction as a linear program, we did not require
that the cross-correlations terms satisfy the inequality∣∣∣∣∣∣ < δiδj >√

< δ2i >< δ2j >

∣∣∣∣∣∣ ≤ 1. (15)

The output of the linear program just turns out to
satisfy these constraints for this particular dataset.
Indeed, we now use the breakdown in these cross-
correlation constraints to probe how much resolution
can be obtained in the error map of the DEMs.

To study the resolution limit of `1-minimization proce-
dure, we shrank the size of the area in the Twenty-Nine
maps over which the difference equations were aver-
aged. We have no independent way of verifying the va-
lidity of the reconstruction except the self-consistency
check that the reconstructed vector does indeed rep-
resent a covariance matrix – its dimensionless cross-
correlations should have an absolute value less than or
equal to one.

Surprisingly the resolution of the covariance matrix for
this data is on the order of 5x5 postings. We show an
example of the covariance matrix for a patch encom-
passing the postings 500 to 505 in both directions in
figure 2(a). The covariance matrix for the patch en-
compassing the postings 500 to 510 is shown in figure
2(b). The breakdown in reconstruction for the 5x5
patch is most evident in the cross-correlations related
to the DEM in position 9. For this particular patch the
variance of DEM 9 is calculated as 1.1 10−5 m2 and
the variance of DEM 1 is calculated as 1.0 10−1 m2.
The dimensionless cross-correlation between them has
a value of 30.0 – the `1-minimization has not produced
a proper covariance matrix for this small patch.

No breakdown is found in the 10x10 patch. Similar
results were obtained over a handful of other patches
over the mapped scene. Interestingly, an earlier paper
by the authors had found that for this dataset the
horizontal decorrelation length was in the order of 5
postings, a result that was obtained by a “cheating”
experiment that used ray-tracing to establish a pseudo
ground truth against which the error at the individual
posting level could be calculated.

7. Conclusions and Future Work

We conclude by discussing the utility of estimating
precision error even while neglecting or increasing the
accuracy error. Geometric accuracy is defined by a
global set of transformations. The parameters needed
to define it are finite and readily extracted by knowing
at most the location for three points in the world. In
that sense, accuracy is cheap to obtain. Precision, on
the other hand, captures the local variability of the
3-D model reconstructions. The parameters needed
to model it, if one wished to do so, are correspond-
ingly large. Therefore, 3-D model precision is expen-
sive for the user to correct since it involves multiple
measurements spread over the whole scene. Therefore,
the autonomous error estimation algorithm presented
here should have application in computer vision tasks
where accuracy is not needed. An example of such a
task is species identification by shape where the res-
olution is more important than the absolute size or
orientation of the objects. Many more examples can
be thought of, where accuracy is not relevant but pre-
cision is. One obvious class of problems for which this
algorithm would not be helpful is those that require
accurate geolocation of an object in the scene. A rea-
sonable guarantee of accuracy can be obtained by us-
ing proper external references (GPS, attitude-heading
sensors, etc.) but this algorithm is invariant to their
accuracy error.
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Table 1. Covariance matrix entries along the block diagonal for the ten DEMs in the 29 Palms dataset. Variance is in
units of m2.

DEM < δ2i > < δiδj > /
√
< δ2i >< δ2j >

AB 0.044 0.45BA 0.046
AC 0.056 0.59CA 0.056
AD 0.036 0.38DA 0.031
BC 0.114 0.73CB 0.108
CD 0.100 0.69DC 0.085

(a) `1-minimization

DEM < δ2i > < δiδj > /
√
< δ2i >< δ2j >

AB 0.048 0.50BA 0.053
AC 0.054 0.57CA 0.054
AD 0.041 0.44DA 0.036
BC 0.115 0.73CB 0.108
CD 0.104 0.71DC 0.089

(b) Correlated-pair error model

(a) Covariance matrix for a patch of size 5x5 (b) Covariance matrix for a patch of size 10x10
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The present paper has demonstrated that the covari-
ance matrix of the geometric precision errors can be
measured autonomously. The present formalism ap-
plies to other areas of Machine Learning, indeed, to
any scientific setting where multiple scalar predictions
are available for a set of entities. For example, the
precision error equations (3) can used for comparing
the relevance judgment of various information retrieval
algorithms. Instead of elevations, one would use the
binary judgment of relevancy to compare the retrieval
models.

Future work will continue to explore the utility of the
precision error covariance matrix for data fusion (what
is the optimal way to combine the DEMs to minimize
the total precision error?), and extend the formalism of
the precision error equations (3) to multi-dimensional
or other non-scalar models such as 3-D locations or
parse trees in computational linguistics.
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