
Spectral Clustering with Inconsistent Advice

Tom Coleman colemant@csse.unimelb.edu.au

James Saunderson j.saunderson@ugrad.unimelb.edu.au

Anthony Wirth awirth@csse.unimelb.edu.au

The University of Melbourne, Victoria 3010 Australia

Abstract

Clustering with advice (often known as con-
strained clustering) has been a recent focus
of the data mining community. Success has
been achieved incorporating advice into the
k-means and spectral clustering frameworks.
Although the theory community has explored
inconsistent advice, it has not yet been incor-
porated into spectral clustering. Extending
work of De Bie and Cristianini, we set out a
framework for finding minimum normalised
cuts, subject to inconsistent advice.

1. Introduction

Clustering is an exploratory data analysis problem
which asks us to form groups of related objects. Al-
though humans have a good intuition for clustering in
two dimensions, if the data is in a higher dimensional
space, it can be hard to visualise. In this paper, we
will focus on the problem of clustering data into two
clusters, subject to a balance criterion and advice.

1.1. Clustering with advice

It is sensible for clustering algorithms to be able to
incorporate must-link and cannot-link advice1, as it is
known in the constrained clustering community. For
example, in biology, when experimentally clustering
proteins (or genes etc), it is often practical to test as-
sociations of individual pairs. However, there is no
guarantee that the advice we generate in this way will
be correct. Additionally, it is well known that hu-

1Traditionally in the literature, what we call advice is
referred to as constraints. We use the term advice here to
avoid confusion with constraints that are introduced into
the problem in later sections.

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

man and biological ‘experiments’ are often subject to
noise. If we have enough noisy advice, that advice will
be inconsistent—that is, there is no way to cluster the
data which agrees with all the advice.

In that case, the objective naturally becomes to re-
spect as much advice as possible. In fact, if we ignore
all the data apart from the advice, we have the the
2-correlation clustering problem (2CC), known to be
NP-hard (Bansal et al., 2004). In this context, we can
think of the advice graph—which has an edge for each
piece of advice, labelled with a + for a must-link, and
a − otherwise.

1.2. Balanced clustering

A natural problem to solve when clustering in general
is the normalised cut (Shi & Malik, 2000). Normalised
cut (Ncut) asks us to find a cut which minimises inter-
cluster affinity whilst maximising intra-cluster affinity
in a sensible way. In the two cluster case, this is to

minimise the quantity
cut(S, S̄)

vol(S)vol(S̄)
, where cut(S, S̄)

measures the affinity across the cut and vol(S) is the
total degree (out-affinity) of all the nodes within S.

Our aim for the paper is to attempt to optimise both
the Ncut and 2CC criteria simultaneously. To do so
we will need to relax the problems—we cannot hope
to solve them combinatorially.

1.3. Relaxed versions of the clustering

problems

Traditionally, spectral approaches were used for the
Ncut problem, as they led to fast algorithms. Re-
cently there has been a trend towards tighter, semidef-
inite programming (SDP)-based, relaxations. We will
demonstrate how to alter the basic spectral clustering
algorithm, and the SDP techniques, to integrate and
deal sensibly with inconsistent advice.

Suppose that the advice is consistent (it is simple to

Spectral Clustering with Inconsistent Advice

check this fact). Once we know that this is the case,
it is sensible to constrain the space of the solutions
that we explore only to contain clusterings that are
consistent with this advice.

1.4. Existing approaches

Spectral Clustering Spectral Clustering appeared
first in the literature in the 1970s. Much of the recent
popularity of the technique was instigated by the con-
nection to Ncut as shown by Shi and Malik (2000).

Advice Advice (instance-level constraints) for clus-
tering problems was introduced to the machine
learning community in the work of Wagstaff and
Cardie (2000) who developed a variant of the classic
k-means algorithms to incorporate advice.

Kamvar, Klein and Manning (2003) integrated advice
into the spectral formulation by directly changing en-
tries of the Laplacian matrix. Xing et al. (2003) im-
prove on this idea by essentially changing the Lapla-
cian in a more consistent way. They do this by finding
a metric that best agrees with the advice. These meth-
ods do not directly exploit the nature of the spectral
algorithm.

SDP relaxations for N-cut Xing and Jor-
dan (2003) outline a SDP formulation for the Ncut

problem for multiple clusters and highlight the con-
nection to spectral clustering. De Bie and Cristian-
ini (2006) provide an SDP which is easier to deal with,
and demonstrate that the subspace trick can also be
used to introduce advice to this problem.

The subspace trick De Bie, Suykens and
De Moor (2004) outline a subspace trick to integrate
advice into spectral clustering by constraining a so-
lution to be within the subspace of solutions which
agree with the advice. This approach was also pre-
viously mentioned in the work of Yu and Shi (2001).
This technique leaves the spectral algorithm essentially
unchanged; it now just searches for eigenvectors in a
different subspace. However it is not necessarily ap-
parent from their work how to extend this technique
to inconsistent advice. This is the key issue addressed
in this paper.

1.5. Addressing Inconsistency

So how can we apply the subspace trick when the ad-
vice we have is no longer consistent?

As a first approach (Method One), we could sim-
ply try to solve 2CC defined by the advice, and reject
any advice that this solution fails to respect. A good

(a) N-cut problem (b) CC problem

Figure 1. A problem for which not all optimal solutions to
2CC are optimal for the accompanying Ncut problem.

solution to 2CC will ensure that we minimise the num-
ber of such edges that we will have to ignore. Then
the advice that remains will be consistent, and we can
then use the subspace trick. Or indeed, we could use
any other constraint-based clustering algorithm in this
way.

However, this idea has some problems. A toy example
of inconsistent advice in Figure 1 shows that deleting
any one of the three edges will result in an optimal so-
lution to 2CC. However, one specific cut (namely sep-
arating node 3 from nodes 1 and 2) has a much better
Ncut cost. So, in forcing a particular optimal solution
to 2CC, we are constraining our Ncut solution too
much. A second approach (Method Two) that solves
this problem is to calculate the cost of an approxi-
mately optimal solution to 2CC. Rather than force
our Ncut solution to be consistent with this 2CC so-
lution, instead we simply require that our Ncut solu-
tion has the same correlation clustering cost. This ap-
proach will give the Ncut side of our algorithm some
room to move, avoiding situations like Figure 1. This
technique will be outlined in section 4.1.

A third approach (Method Three) is to allow the al-
gorithm to differ from the optimum correlation cluster-
ing cost, but only by some a given factor. So now the
Ncut side of the problem has some breathing space
in which to find a good solution, whilst we are still
forcing a very good solution to 2CC. This approach is
developed in section 4.2.

2. Relaxing the Problem

2.1. Normalised Cut

To define the Ncut problem, we begin with an edge-
weighted affinity graph with associated affinity ma-
trix A. Distant edges may have zero affinity—we can
represent this by deleting the connecting edge, which
will speed up the computation.

Spectral Clustering with Inconsistent Advice

We represent a 2-clustering by a vector v, where each
coordinate represents a datapoint, and is either +1 or
−1 depending on cluster assignment. The Ncut value
becomes:

Ncut(v) =
vTL(A)v

vTL(ddT)v
(1)

where d is the vector of vertex degrees, and L(X) is the
Laplacian of matrix X . Recall that if e is the vector
consisting of all ones and diag(x) is the matrix with
vector x on the main diagonal and zeros elsewhere,
then L(X) = diag(Xe) − X .

2.2. Spectral Clustering

In the spectral relaxation, instead of assigning
±1 to each vertex, we assign a real number
vi. If v = (v1, . . . , vn) then Ncut relaxes to

P1. Spectral clustering

min
vTL(A)v

vT Dv
s.t. dT v = 0

where D = diag(d). This relaxation is correct because
vTL(A)v is invariant under translations of v so we can
add the constraint dT v = 0 without changing the op-
timum cost. With this constraint, the denominator of
(1) can be simplified as in P1.

It turns out that v = D
1

2 u is an optimum solution
of P1, where u is the eigenvector of D− 1

2L(A)D− 1

2

corresponding to the smallest non-zero eigenvalue.

2.3. The SDP formulation

In the two cluster case, De Bie and Cristianini (2006)
devised an efficient relaxation of Ncut to a semidef-
inite program. In this case, instead of assigning ±1
to the vertices we assign vectors vi of some com-
mon length. If X is the Gram matrix of these
vectors (i.e. Xij = vT

i vj) then the relaxation is

P2. De Bie and Cristianini SDP

min
X,q

L(A) • X

s.t.
L(ddT) • X = 1 (2)

∀i ∈ [n] Xii = q (3)

X � 0 (4)

where A • B = trace(AB) for matrices of appropriate
dimension. Here the free variable q is the common
(squared) length of the vi and (2) is a scaling con-
straint corresponding to the denominator of the Ncut

objective function (1).

Importantly, given any X � 0 we can find v1, . . . , vn

such that Xij = vT
i vj ; we can thus convert a solution

to P2 to an assignment of vectors to the vertices of
the graph.

Spectral clustering can be recovered from P2 by re-
moving the constraints of (3) (see Goemans (1997)).

2.4. The ‘subspace trick’

The subspace trick of De Bie, Suykens and
De Moor (2004) gives a method for incorporating con-
sistent advice into spectral and SDP relaxations of
Ncut. As an example, consider spectral clustering
and suppose we have two ‘blocks’ of independent ad-
vice. The first that two vertices, say v1 and v2, should
be in the same cluster and both should be in a differ-
ent cluster to v3, the second that vertices v4 and v5

should be in the same cluster. Then it makes sense
to constrain the solution vector v so that v1 = v2 and
v4 = v5 guaranteeing that these pairs of vertices end
up in the same cluster after rounding. It also makes
sense to constrain v so that v3 = −v2 = −v1. This can
be done by assuming v has the form

v =

1 0 0
1 0 0
−1 0 0
0 1 0
0 1 0
0 0 In−5

u = Y u

where u ∈ R
n−3. The identity matrix corresponds to

vertices for which we have no advice and so should not
constrain.

3. Correlation Clustering

Given an advice graph, in the form of + (must-link) or
− (cannot-link) edges between datapoints, the corre-
lation clustering problem asks us to cluster the data-
points so that the number of pieces of advice (i.e. edge
labels) that are disobeyed is minimised.

3.1. 2CC — the combinatorial problem

In general, unlike the affinity graph, the advice graph
is not connected. So we can solve correlation clustering
independently on each connected component. We call
the vertices in a connected component an advice block.
We assume without loss of generality that the order on
the vertices ensures that the vertices within each block
are consecutive. Here we will deal with the problem
of solving 2CC for a single advice block B with m
vertices. In later sections, we will consider multiple
advice blocks.

If e is an edge within B let we ∈ ±1 correspond to the
the sign of e. As for Ncut, we assign vi = ±1 to each

Spectral Clustering with Inconsistent Advice

vertex depending on the cluster in which we place that
vertex. For convenience, let Eij be the matrix with a
1 in the (i, j) entry and zeros everywhere else.

Our immediate aim is to find, in terms of v, a simple
expression for the number of constraints violated by
the labelling.

Consider a single edge e = {i, j} of B with label we.
Define

Me = (Eii + Ejj) − we(Eij + Eji)

and note that Me � 0 because its eigenvalues are 0
and 2. Now

vT Mev = v2

i − 2wevivj + v2

j (5)

= |vi − wevj |2 (6)

=

{
0 if v respects the advice on e

4 otherwise.
(7)

So if we define MB =
∑

e Me it follows that

vT MBv = 4 × (# pieces of advice violated by v).

Thus 2CC is essentially

min
v∈{−1,1}m

vT MBv. (8)

Note that a clustering that satisfies all the advice in a
block will have cost zero. Also observe that vT v = m
is a constant so we could replace the objective function
with (vT MBv)/(vT v) without changing the optimum
vector.

3.2. Relaxations of 2CC

Recall that our overall aim is to constrain any algo-
rithm we have for (approximately) solving Ncut to
produce clusterings which are, in terms of 2CC cost,
not much worse than the optimum.

Since we cannot hope to solve (8) exactly, we will in-
stead solve a relaxed version of it. In this paper we
consider two relaxations which arise in much the same
way as the spectral and SDP relaxations of Ncut.

P3. Spectral relaxation of correlation clustering

min
v

vT MBv

vT v

Observe that the solution of P3 is given by any
non-zero vector in the λmin-eigenspace of MB.

P4. SDP relaxation of correlation clustering

min
X

MB • X

s.t. ∀i ∈ [m] Xii = 1 (9)

X � 0

For either relaxation, if the advice is consistent, the
relaxation produces a solution of the same cost (zero)
as the optimal solution to the combinatorial problem
(8). This is because any solution of the original prob-
lem is a feasible point of the relaxed problem, and the
relaxed problem has non-negative cost as MB � 0.

4. Clustering with inconsistent advice

In this section, we give the details of Method Two

and Method Three, introduced in Section 1.5, for
both the spectral and SDP relaxations of Ncut.

Throughout, let B1, . . . ,Bp be the advice blocks of the
advice graph. Let vB denote the projection of v onto
the coordinates involved in advice block B. Along sim-
ilar lines, if uB is a vector of length |B| ≤ n associated
with the advice block B, define ũB to be the length n
vector that agrees with uB in the appropriate coordi-
nates and has zeros elsewhere. For a |B| × |B| matrix

MB we also define M̃B in a similar fashion.

4.1. Combining 2CC and Ncut: Method Two

Let optj denote the optimum cost of the SDP relax-
ation of 2CC (P4) for block j. For the SDP relax-
ation, we can add the constraint that for each advice
block, the 2CC cost of point X is at most q · optj .
(The scaling by q is necessary because in P4 the vari-
ables satisfy Xii = 1 whereas in P2 the variables sat-
isfy Xii = q.) This forces the new SDP (P5) only to
consider points of minimum SDP-relaxed 2CC cost.

P5. Method Two(SDP version)

min
X,q

L(A) • X

s.t.

L(ddT) • X = vol(V)

∀i ∈ [n] Xii = q

∀j ∈ [p] M̃Bj
• X ≤ q · optj (10)

X � 0

In the spectral case, the analogous thing to do would
be to add the following constraints to the spectral re-
laxation of Ncut.

∀j ∈ [p]
vT
Bj

MBj
vBj

vT
Bj

vBj

≤ λmin(MBj
) (11)

But doing so would mean the problem would no longer
be an eigenvalue problem—in fact it would be an
SDP—which would undermine the main strength of
spectral clustering, its speed.

Luckily, the condition in (11) is equiva-
lent to the condition that each vBj

is in

Spectral Clustering with Inconsistent Advice

the λmin-eigenspace of MBj
, resulting in P6.

P6. Method Two(spectral version)

min
v

vTL(A)v

vT Dv

s.t. dT v = 0 (12)

∀j ∈ [p] vBj
∈ λmin-eigenspace of MBj

(13)

The constraints (12) and (13) are forcing v to be in
some linear subspace of R

n. So the problem can then
be solved using the subspace trick. Details of how to
do this are in Appendix A.

4.2. Combining 2CC and Ncut: Method Three

The main drawback of Method Two is that it does
not give the algorithm much freedom to balance the
trade-off between the 2CC and the Ncut problem. If
the advice is quite inconsistent, then forcing the algo-
rithm to follow solutions of a relaxation of 2CC too
closely will result in poor performance.

Above, we forced the algorithm to produce a (relax-
ation of) a clustering that had cost at most the mini-
mum cost of the appropriate relaxation of 2CC. Now
we introduce a parameter f ≥ 1 which tells us the fac-
tor by which we are willing to exceed the 2CC cost.

This is straightforward to introduce to the SDP for-
mulation. We simply replace the constraints (11) of
P5 with

∀j ∈ [p] M̃Bj
• X ≤ f · q · optj . (14)

In the spectral formulation, the constraints we actually
want to add are

∀j ∈ [p]
vT
Bj

MBj
vBj

vT
Bj

vBj

≤ f ·λmin(MBj
) (15)

but, again we cannot add these and still have an eigen-
value problem. Unfortunately in this case we cannot
get a constraint equivalent to (15) by the subspace
trick. So, in the interests of producing a practical al-
gorithm, we approximate (15) by

∀j ∈ [p] vBj
∈ (≤ f · λmin)-eigenspace of MBj

(16)

where the (≤ f ·λmin)-eigenspace of MBj
is the span of

all eigenvectors of MBj
with eigenvalue at most f ·λmin.

If v satisfies (16) then it satisfies (15), but the converse
does not necessarily hold.

Replacing the constraints in (13) of P6 with the con-
straints in (16) gives our final spectral algorithm for
clustering with inconsistent advice. It can again be
solved with the subspace trick, using the techniques
outlined in Appendix A, because all the constraints
simply force v to be in some linear subspace of R

n.

5. Experimental Investigations

5.1. Experiment Setup

In order to test the performance of the algorithms on
real world datasets, we used six of the UCI repository
datasets (Asuncion & Newman, 2007). All datasets
are multi-dimensional binary classification problems.

Both datasets were stripped of incomplete records, and
in one case (the Spambase dataset), sampled down to
500 datapoints. In each case, the two clusters were
of different sizes. This contributed to the mediocre
performance of the pure spectral algorithm. This gives
us reason to believe that adding advice will help the
situation.

For reasons of speed, our experiments primarily use
the spectral version of each of the algorithms. Re-
laxed solutions are rounded to clusterings by cutting
at zero. This ensures that advice respected in the re-
laxed solution is respected in the final clustering.

Advice We generated two different ‘types’ of syn-
thetic advice for these problems to get a sense of how
the algorithms perform. The first we call Dense—here
we are generating around n pieces of advice. We are
generating that advice in a dense fashion—we concen-
trate all advice within 5 separate groups of 20 data-
points. This simulates a few sets of experiments done
on some small subset of the total dataspace. Each
piece of advice agrees with the actual classification in-
dependently with some probability p.

The second type of advice is the Complete case—
here we are simulating pairwise comparisons that are
relatively cheap, but quite noisy. So we generate a
piece of advice for each pair of datapoints, and thus
our advice graph is complete.

2CC Algorithms In order to test Method One,
we need to solve 2CC on each advice block. In the
Dense case, we use a tight, strongly performing SDP
relaxation (Agarwal et al., 2005). In the complete
case, we use the simple 3-approximation algorithm of
Bansal, Blum and Chalwa (2004) with a final local
search step (see also our other paper (Coleman et al.,
2008)).

For each advice type on each dataset, we ran spectral
clustering with no advice (as a baseline), Method

One (as a second baseline), and then spectral clus-
tering with every different meaningful f value from 1
upwards. That is, every increment in f that added
one additional eigenvector to a single block, until all
eigenvectors were added (which is exactly the same as
the no advice case).

Spectral Clustering with Inconsistent Advice

5.2. Results

Dense advice Figure 2 displays the results of the
Dense advice problem on the Heart Disease dataset
with p = 0.75. We can see that the advice here is
sufficiently inconsistent that algorithms which follow
it closely (i.e. Method One and Method Two)
perform far worse than the algorithm that ignores it
completely (that is, spectral alone). But we can see
that by increasing f and striking a balance between
ignoring advice and respecting it too strongly, we can
achieve results that outperform either extreme. We
also note that two other datasets, Congressional

Voting Records and Australian, perform simi-
larly.

Figure 3 shows the results of running very similar ad-
vice (again p = 0.75) on the Spambase dataset. Here
we can see that algorithms that strictly follow the ad-
vice outperform algorithms that ignore it, quite sig-
nificantly. It is perhaps unsurprising then that when
we allow the algorithm more and more freedom to ig-
nore the advice we move toward the baseline no advice
score. This highlights the fact that these algorithms
are not always of use—there needs to be enough inac-
curacy in the advice that attempting to follow it is not
a great idea.

However, if we lower p to be 0.65, the situation
changes, and we get a scenario as demonstrated by
Figure 4. Here as for the Heart Disease case, using
only the 2CC solution is worse than using no advice at
all, and for a large range of f values, the compromise
of using some advice is better than either extreme.
Here the Haberman dataset performs similarly. The
difference in this case is that for high f values, very
poor performance is exhibited. We will discuss this in
the next section.

Finally, we consider the Hepatitis dataset (Figure 5).
Here we see new behaviour, as our algorithms only
begin to perform well for high f values.

Complete Advice Figures 6 and 7 show the results
of the experiments on the two datasets with Com-

plete advice. We first notice that in order to get
meaningful experiments, we needed to set p extra-
ordinarily low—all the way down to p = 0.53. If p
is much higher than this, advice is so complete that
any incorrect edges will be vastly overshadowed by cor-
rect ones, and simply solving 2CC on the instance will
give 100% accuracy.

However, with p = 0.53 and the problem interesting,
we can see that things are similar to the Dense case.
Again, when f is low, we start at the 2CC-baseline,

1 2 3 4 5 6 7 8 9 10
0.65

0.66

0.67

0.68

0.69

0.7

0.71

0.72

0.73

0.74

0.75

f value

A
cc

ur
ac

y

Figure 2. Heart Disease dataset, Dense advice, p =
0.75. The unbroken line is the baseline no advice accu-
racy; the dashed line is the correlation clustering based
algorithm (Method One).

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0.6

0.61

0.62

0.63

0.64

0.65

0.66

0.67

0.68

f value

A
cc

ur
ac

y

Figure 3. Spambase dataset, Dense Advice, p = 0.75

1 2 3 4 5 6 7
0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

f value

A
cc

ur
ac

y

Figure 4. Spambase dataset, Dense advice, p = 0.65

Spectral Clustering with Inconsistent Advice

0 5 10 15 20 25
0.49

0.5

0.51

0.52

0.53

0.54

0.55

0.56

f value

A
cc

ur
ac

y

Figure 5. Hepatitis dataset, Dense advice, p = 0.6

1 1.05 1.1 1.15 1.2 1.25
0.45

0.5

0.55

0.6

0.65

0.7

0.75

f value

A
cc

ur
ac

y

Figure 6. Heart Disease dataset, Complete advice, p =
0.53

1 1.02 1.04 1.06 1.08 1.1 1.12 1.14 1.16 1.18 1.2
0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

f value

A
cc

ur
ac

y

Figure 7. Spambase dataset, Complete advice, p = 0.53

and as f increases we move towards and above the no-
advice baseline. An interesting point is that the 2CC

baseline is around 0.5 in both cases. Note that this is
an extremely low score—the advice alone is useless for
solving the problem, yet it is still a useful addendum
for the spectral method.

As we saw in the Dense case, one interesting difference
between the two datasets is the way the performance
drops off as f increases. For Heart Disease, the
performance seems to asymptote to the no-advice case
as we increase f (as we would expect). However, in
both cases for the Spambase data, there is a huge
dropoff in performance for high end f values. We have
no explanation currently for this phenomenon.

6. Conclusions and further work

We have presented a new algorithm that uses incon-
sistent advice in spectral clustering. This paper is
the first to do so. Initial experiments indicate that in
many situations our methods are successful, however
further theoretical and experimental work is needed.
For example, given a clustering problem with incon-
sistent advice, how do we know when to use Method

Three rather than Method Two? And if we are to
use Method Three, how do we decide which value
of f to choose?

This paper was intended as a largely theoretical
work—experiments were performed to give prelimi-
nary evidence that the techniques work. Certainly
a more thorough comparison to existing work is
needed—a technique similar to Method One could
be used in order to compare our algorithms to other
approaches that can only deal with consistent con-
straints. These will be tested in the full version of
the paper.

Additionally, in this paper we focused on clustering
into two clusters. This is for two reasons. First, there
is no obvious way to express cannot-link advice when
we have more than two clusters—the approach used
here does not generalise nicely. Furthermore, we do
not know of an SDP relaxation of the problem which
fits into the framework of this paper for the case of
more than two clusters. Future work will try to ad-
dress these problems.

Acknowledgments

Thanks to Ian Davidson for encouraging us to pursue
this problem, and to the anonymous reviewers of the
draft version. This work was supported by the Aus-
tralian Research Council through Discovery Project

Spectral Clustering with Inconsistent Advice

Grant DP0663979.

References

Agarwal, A., Charikar, M., Makarychev, K., &
Makarychev, Y. (2005). O(

√
log n) approximation

algorithms for min UnCut, min 2CNF deletion,
and directed cut problems. Proceedings of the
Thirty-Seventh Annual ACM Symposium on Theory
of Computing, 573–581.

Asuncion, A., & Newman, D. (2007). UCI machine
learning repository.

Bansal, N., Blum, A., & Chawla, S. (2004). Correla-
tion clustering. Machine Learning, 56, 89–113.

Coleman, T., Saunderson, J., & Wirth, A. (2008). A
local-search 2-approximation for 2-correlation clus-
tering. Submitted.

De Bie, T., & Cristianini, N. (2006). Fast SDP Relax-
ations of Graph Cut Clustering, Transduction, and
Other Combinatorial Problems. The Journal of Ma-
chine Learning Research, 7, 1409–1436.

De Bie, T., Suykens, J., & De Moor, B. (2004). Learn-
ing from general label constraints. Joint IAPR In-
ternational Workshops on Structural, Syntactic, and
Statistical Pattern Recognition, 671–679.

Goemans, M. (1997). Semidefinite programming in
combinatorial optimization. Mathematical Program-
ming, 79, 143–161.

Kamvar, S., Klein, D., & Manning, C. (2003). Spec-
tral learning. Proceedings of the Seventeenth Inter-
national Joint Conference on Artificial Intelligence
(IJCAI-2003), 561–566.

Shi, J., & Malik, J. (2000). Normalized cuts and im-
age segmentation. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 22, 888–905.

Wagstaff, K., & Cardie, C. (2000). Clustering with
instance-level constraints. Proceedings of the Seven-
teenth International Conference on Machine Learn-
ing, 1103, 1110.

Xing, E., & Jordan, M. (2003). On Semidefinite
Relaxation for Normalized K-cut and Connections
to Spectral Clustering. Computer Science Division,
University of California.

Xing, E., Ng, A., Jordan, M., & Russell, S. (2003).
Distance metric learning, with application to clus-
tering with side-information. Advances in Neural
Information Processing Systems, 15, 505–512.

Yu, S., & Shi, J. (2001). Grouping with Bias. Carnegie
Mellon University, the Robotics Institute.

A. Implementing spectral clustering

with inconsistent advice

In this section we explain how to implement the spec-
tral version of Method Two and Method Three

using the subspace trick.

Let WBj
be a matrix whose columns are a basis for the

(≤ f · λmin)-eigenspace of MBj
. Let N (X) and R(X)

respectively denote the nullspace and range space of a
matrix X . Then the problem can be written as follows:

P7. Spectral clustering with inconsistent advice

min
v

vTL(A)v

s.t.
vT Dv = 1

v ∈ N (dT) (17)

∀j ∈ [p] vBj
∈ R(WBj

) (18)

Let

W =

WB1
· · · 0 0

0 · · · 0 0
...

. . .
...

...
0 · · · WBp

0
0 · · · 0 I

where the dimension of I is the number of vertices
not involved in any advice. Then we can replace the
constraints (17) and (18) with

v ∈ N (dT) ∩R(W) = C
Suppose Y is a matrix satisfying R(Y) = C and
Y T DY = I. Then if we let v = Y u it is clear that
v ∈ R(Y) which is what we want. So P7 becomes

min (uT Y T)L(A)(Y u) s.t. uT u = 1 (19)

A solution of (19) is given by taking u to be an
eigenvector corresponding to the smallest eigenvalue
of Y TL(A)Y . The solution to the original problem is
then v = Y u.

Elementary linear algebra shows Y generated thus is
satisfactory:

1. Let N be a matrix whose columns are an or-
thonormal basis for N (dT W) with respect to the
inner product 〈x, y〉 = yT x.

2. Let R be a matrix whose columns are an orthonor-
mal basis for R(W) with respect to the inner
product 〈x, y〉D = yT Dx.

3. Set Y = RN .

