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Abstract

This paper is concerned with the generaliza-
tion ability of learning to rank algorithms for
information retrieval (IR). We point out that
the key for addressing the learning problem is
to look at it from the viewpoint of query. We
define a number of new concepts, including
query-level loss, query-level risk, and query-
level stability. We then analyze the general-
ization ability of learning to rank algorithms
by giving query-level generalization bounds
to them using query-level stability as a tool.
Such an analysis is very helpful for us to de-
rive more advanced algorithms for IR. We ap-
ply the proposed theory to the existing algo-
rithms of Ranking SVM and IRSVM. Exper-
imental results on the two algorithms verify
the correctness of the theoretical analysis.

1. Introduction

Recently, learning to rank has gained increasing at-
tention in machine learning and information retrieval
(IR). When applied to IR, learning to rank is a task
as follows. Given a set of training queries, their as-
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sociated documents, and the corresponding relevance
judgments, a ranking model is created which best rep-
resents the relevance of documents with respect to
queries. When a user submits a query to the IR sys-
tem, the trained model assigns a score to each docu-
ment associated with the query, sorts the documents
based on their scores, and presents the top ranked doc-
uments to the user. Average ranking accuracy over a
large number of queries is usually used to evaluate the
effectiveness of a ranking model. Therefore, from the
application’s perspective, both training and evaluation
should be conducted at query level.

Many learning to rank algorithms have been proposed
in recent years. Examples include the pointwise rank-
ing algorithms like MCRank (Li et al., 2007), the pair-
wise ranking algorithms like Ranking SVM (Herbrich
et al., 1999) and RankBoost (Freund et al., 2003), and
the listwise ranking algorithms like ListNet (Cao et al.,
2007). Analysis on the algorithms in the light of sta-
tistical learning theory, however, was not sufficient,
particularly that on the generalization ability of the
proposed algorithms. The pointwise and pairwise ap-
proaches transform the ranking problem to classifica-
tion or regression, and thus existing theory on clas-
sification and regression can be applied. However, it
deviates from the direction of enhancing ranking accu-
racy at query level. Furthermore, the listwise approach
lacks of analysis on generalization ability.

In this paper, we investigate the generalization ability
of learning to rank algorithms, in particular from the
viewpoint of query-level training and evaluation.
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We propose a new probabilistic formulation of learning
to rank for IR. The formulation can naturally repre-
sent the pointwise, pairwise and listwise approaches
in a unified framework. Within the framework, we
introduce the concepts of query-level loss, query-level
risk, and particularly query-level stability. Query-level
stability measures whether the output of a learning
algorithm changes largely with small changes in the
training queries. With query-level stability as a tool
we can conduct analysis on query-level generalization
bounds of learning algorithms. A query-level gener-
alization bound indicates how well one can enhance
the expected ranking accuracy (corresponding to the
expected risk) by enhancing the average ranking accu-
racy in training (corresponding to the empirical risk).

We take the algorithms of Ranking SVM (Joachims,
2002; Herbrich et al., 1999) and IRSVM (Cao et al.,
2006; Qin et al., 2007) as examples, and apply the pro-
posed theory to them. Our theoretical result shows
that the query-level generalization bound of Ranking
SVM is not reasonably good, mainly because Rank-
ing SVM is trained at document pair level, not query
level. Furthermore, IRSVM does have a better gener-
alization bound than Ranking SVM, due to its stronger
query-level stability. We also conducted experiments
and our experimental results agree with the theoretical
findings.

The contributions of this paper are listed as follows.
(1) A proposal on conducting analysis on learning to
rank algorithms at query level is made. (2) A new
probabilistic formulation of learning to rank is pro-
posed. (3) A new methodology for analyzing gener-
alization ability of learning to rank algorithms on the
basis of query-level stability is proposed. (4) The pro-
posed theory is applied to learning to rank algorithms
of Ranking SVM and IRSVM. The correctness of the
theory has been verified by experiments.

2. Previous Work

2.1. Ranking in IR

Ranking is a central issue for IR. Many methods for
creating ranking models have been proposed, including
heuristics and learning based methods, (Baeza-Yates
& Ribeiro-Neto, 1999; Herbrich et al., 1999; Joachims,
2002; Freund et al., 2003; Burges et al., 2005; Cao
et al., 2007). Typically a ranking model is defined as
a function of features based on query-document pair,
and is learned with training data containing a num-
ber of queries, associated documents, and correspond-
ing relevance judgments. Measures for evaluating the
performance of a ranking model, such as Precision,

MAP (Baeza-Yates & Ribeiro-Neto, 1999), and NDCG
(Järvelin & Kekäläinen, 2002) have been defined and
used. All the measures are query-based; if the evalu-
ation measure for a query q is EV (q), then the aver-
aged EV (q) on a number of queries is used. From the
application’s perspective, both training and testing in
learning to rank should be conducted at query level.

2.2. Learning to Rank

So far learning to rank has been addressed by the
pointwise, pairwise, and listwise approaches. In the
pointwise approach (Li et al., 2007), ranking is trans-
formed to regression or classification, and the loss func-
tion in learning is defined as a function of a single docu-
ment. In the pairwise approach (Herbrich et al., 1999;
Joachims, 2002; Freund et al., 2003; Cao et al., 2006),
ranking is transformed to pairwise classification, and
the loss function is defined on a document pair. In the
listwise approach (Cao et al., 2007; Qin et al., 2007),
document lists are viewed as learning instances and
the loss function is defined on that basis.

Although many learning methods have been proposed,
theoretical investigations on them were not sufficient.
Since training and testing should be conducted at
query level, studies on query-level generalization abil-
ity of learning algorithms are really needed. Unfortu-
nately, it was missing in the previous work.

2.3. Stability Theory

The notion of stability (Devroye & Wagner, 1979) has
been proposed for analyzing the generalization bounds
of learning algorithms.

Bousquet et al. (Bousquet & Elisseeff, 2002) propose
the theory of uniform leave-one-out stability. Based
on it, the generalization bounds of classification algo-
rithms such as Support Vector Machines (SVM) can
be derived. Agarwal et al. (Agarwal & Niyogi, 2005)
apply the stability tool to bipartite ranking.

We can apply the existing stability theory to get doc-
ument level and document pair level generalization
bounds. However, they may be not suitable for the
task of IR. In this paper, we propose query-level sta-
bility and reveal the relation between query-level sta-
bility and query-level generalization bound.

3. Probabilistic Formulation for
Ranking

As explained in Section 2, ranking in IR is evaluated at
query level. Therefore, to design and evaluate a learn-
ing to rank algorithm, we should also look at it from
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the query perspective. To this end, we give a novel
probabilistic formulation of ranking for IR, which con-
tains queries and their associates (documents, docu-
ment pairs, or document sets) in two layers. We then
introduce the notions of query-level loss and query-
level risk.

Assume that query q is a random sample from the
query space Q according to a probability distribution
PQ. For query q, an associate ω(q) and its ground-
truth g(ω(q)) are sampled from space Ω × G accord-
ing to a joint probability distribution Dq, where Ω is
the space of associates and G is the space of ground
truth. Here the associate ω(q) can be a single doc-
ument, a pair of documents, or a set of documents,
and correspondingly the ground truth g(ω(q)) can be
a relevance score (or class label), an order on a pair
of documents, or a permutation (list) of documents.
Let l(f ; ω(q), g(ω(q))) denote a loss (referred to as
associate-level loss) defined on (ω(q), g(ω(q))) and a
ranking function f .

Expected query-level loss is defined as:

L(f ; q) =

∫
Ω×G

l(f ; ω(q), g(ω(q))) Dq(dω(q), dg(ω(q))).

Empirical query-level loss is defined as:

L̂(f ; q) =
1

nq

nq∑
j=1

l(f ; ω
(q)
j , g(ω

(q)
j )),

where (ω(q)
j , g(ω(q)

j )), j = 1 · · · , nq stands for nq asso-
ciates of q, which are sampled i.i.d. according to Dq.
The empirical query-level loss can be an estimate of
the expected query-level loss. It can be proven that
the estimation is consistent.

The goal of learning to rank is to select the ranking
function f which can minimize the expected query-level
risk defined as:

Rl(f) = EQL(f ; q) =

∫
Q

L(f ; q) PQ(dq). (1)

In practice, PQ is unknown. What we have are
the training samples (q1, S1), · · · , (qr, Sr), where Si =
{(ω(i)

1 , g(ω(i)
1 )), · · · , (ω(i)

ni , g(ω(i)
ni ))}, i = 1, · · · , r, and

ni is the number of associates for query qi. Here
q1, · · · , qr can be viewed as data sampled i.i.d. ac-
cording to PQ, and (ω(i)

j , g(ω(i)
j )) as data sampled i.i.d.

according to Dqi , j = 1, · · · , ni, i = 1, · · · , r.

Empirical query-level risk is defined as:

R̂l(f) =
1

r

r∑
i=1

L̂(f ; qi). (2)

The empirical query-level risk is an estimate of the
expected query-level risk. It can be proven that the
estimation is consistent.

This probabilistic formulation can cover most of exist-
ing learning to rank algorithms. If we let the associate
to be a single document, a document pair, or a doc-
ument set, we can respectively define pointwise, pair-
wise, or listwise losses, and develop pointwise, pair-
wise, or listwise approaches to learning to rank.

(a) Pointwise Case

Let D denote the document space. We use a feature
mapping function φ : Q × D → X (= Rd) to create a
d-dimensional feature vector for each query-document
pair. For each query q, suppose that the feature vec-
tor of a document is x(q) and its relevance score (or
class label) is y(q), then (x(q), y(q)) can be viewed as a
random sample from X ×R according to a probability
distribution Dq. If l(f ; x(q), y(q)) is a pointwise loss
(square loss for example), then the expected query-
level loss becomes:

L(f ; q) =

∫
X×R

l
(
f ; x(q), y(q)

)
Dq

(
dx(q), dy(q)

)
.

Given training samples (q1, S1), · · · , (qr, Sr), where
Si = {(x(i)

1 , y
(i)
1 ), · · · , (x(i)

ni , y
(i)
ni )}, i = 1, · · · , r, the em-

pirical query-level loss of query qi, (i = 1, · · · , r) turns
out to be:

L̂(f ; qi) =
1

ni

ni∑
j=1

l(f ; x
(i)
j , y

(i)
j ).

(b) Pairwise Case

For each query q, z(q) = (x(q)
1 , x

(q)
2 ) stands for a doc-

ument pair associated with it. Moreover, y(q) = 1 if
x

(q)
1 is ranked above x

(q)
2 , y(q) = −1 otherwise. Let

Y = {1,−1}. (x(q)
1 , x

(q)
2 , y(q)) can be viewed as a ran-

dom sample from X 2×Y according to a probability dis-
tribution Dq. If l(f ; z(q), y(q)) is a pairwise loss (hinge
loss for example, (Herbrich et al., 1999)), then the ex-
pected query-level loss becomes:

L(q) =

∫
X2×Y

l
(
f ; z(q), y(q)

)
Dq

(
dz(q), dy(q)

)
.

Given training samples (q1, S1), · · · , (qr, Sr), where
Si = {(z(i)

1 , y
(i)
1 ), · · · , (z(i)

ni , y
(i)
ni )}, i = 1, · · · , r, the em-

pirical query-level loss of query qi, (i = 1, · · · , r) turns
out to be:

L̂(f ; qi) =
1

ni

ni∑
j=1

l(f ; z
(i)
j , y

(i)
j ).

(c) Listwise Case

For each query q, let s(q) denote a set of m documents
associated with it, π(s(q)) ∈ Π denote a permutation of
documents in s(q) according to their relevance degrees
to the query, where Π is the space of all permutations
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on m documents. (s(q), π(s(q))) can be viewed as a
random sample from Xm×Π according to a probability
distribution Dq. If l(f ; s(q), π(s(q))) is a listwise loss
(cross entropy loss for example, (Cao et al., 2007)),
then the expected query-level loss becomes:

L(q) =

∫
Xm×Π

l
(
f ; s(q), π

(
s(q)

))
Dq

(
ds(q), dπ

(
s(q)

))
.

Given training samples (q1, S1), · · · , (qr, Sr), where
Si = {(s(i)

1 , π(s(i)
1 )), · · · , (s(i)

ni , π(s(i)
ni ))}, i = 1, · · · , r,

the empirical query-level loss of query qi, (i = 1, · · · , r)
turns out to be:

L̂(f, qi) =
1

ni

ni∑
j=1

l(f ; s
(i)
j , π(s

(i)
j )).

4. Stability Theory For Query-level
Generalization Bound Analysis

Based on the probabilistic formulation, we propose a
novel concept named query-level stability. We further
discuss how to use query-level stability to analyze the
generalization ability of a learning to rank algorithm.

First, we give a definition to uniform leave-one-query-
out associate-level loss stability. The stability of a
learning algorithm represents the degree of change in
the loss of prediction when randomly removing a query
and its associates from the training data.
Definition 1. Let A be a learning to rank algorithm,
{(qi, Si), i = 1, · · · , r} be the training set, l be the
associate-level loss function, and τ be a function map-
ping an integer to a real number. We say that A has
uniform leave-one-query-out associate-level loss stabil-
ity with coefficient τ with respect to l, if ∀qj ∈ Q, Sj ∈
(Ω × G)nj , j = 1, · · · , r, q ∈ Q, (ω(q), g(ω(q))) ∈ Ω × G,
the following inequality holds:∣∣∣l(f{(qi,Si)}r

i=1
, ω(q), g(ω(q)))

−l(f{(qi,Si)}r
i=1,i6=j

, ω(q), g(ω(q)))
∣∣∣ ≤ τ(r).

Here {(qi, Si)}r
i=1,i6=j stands for the samples

(q1, S1), · · · , (qj−1, Sj−1), (qj+1, Sj+1), · · · , (qr, Sr),
where (qj , Sj) is deleted. f{(qi,Si)}r

i=1
stands for the

ranking function learned from {(qi, Si)}r
i=1. We will

use the notations hereafter.

With the definition, we can obtain the following
lemma. It states that, if an algorithm has uniform
leave-one-query-out associate-level loss stability, it will
be stable in terms of expected query-level loss and em-
pirical query-level loss. For ease of explanation, we
simply call the uniform leave-one-query-out associate-
level loss stability query-level stability.

Lemma 1. Let A be a learning to rank algorithm,
{(qi, Si), i = 1, · · · , r} be the training set, and l be the
associate-level loss function. If A has leave-one-query-
out associate-level loss stability with coefficient τ with
respect to l, then the following inequalities hold:∣∣∣L(f{(qi,Si)}r

i=1
, q) − L(f{(qi,Si)}r

i=1,i6=j
, q)

∣∣∣ ≤ τ(r),∣∣∣L̂(f{(qi,Si)}r
i=1

, q) − L̂(f{(qi,Si)}r
i=1,i 6=j

, q)
∣∣∣ ≤ τ(r).

Based on the concept of query-level stability, we can
derive a query-level generalization bound, as shown in
Theorem 1. The theorem states that if an algorithm
has query-level stability, then with high probability
over the samples, the expected query-level risk can
be bounded by the empirical risk and a term which
depends on the query number and parameters of the
algorithm. Furthermore, the theorem quantifies the
expected loss on new queries, which is exactly what
we mean by query-level generalization.
Theorem 1. Let A be a learning to rank algo-
rithm, (q1, S1), · · · , (qr, Sr) be r training samples,
and let l be the associate-level loss function. If
(1) ∀(q1, S1), · · · , (qr, Sr), q ∈ Q, (ω(q), g

(
ω(q)

)
∈

Ω × G,
∣∣l (f(qi,Si)

r
i=1

, ω(q), g
(
ω(q)

))∣∣ ≤ B, (2) A
has query-level stability with coefficient τ , then
∀δ ∈ (0, 1) with probability at least 1 − δ over
the samples of {(qi, Si)}r

i=1 in the product space∏r
i=1 {Q × (Ω × G)∞}, the following inequality holds:

Rl

(
f{(qi,Si)}r

i=1

)
≤ R̂l

(
f{(qi,Si)}r

i=1

)
+ 2τ(r) + (4rτ(r) + B)

√
ln 1

δ

2r
.

Proof. For clarity of the proof, we first give the follow-
ing definitions:

ρ({(qi, Si)}r
i=1)

∆
= Rl

(
f{(qi,Si)}r

i=1

)
− R̂l

(
f{(qi,Si)}r

i=1

)
,∫

Ω1

∆
=

∫
Q

∫
(Ω×G)n1

· · ·
∫
Q

∫
(Ω×G)nr

,

∫
Ω2

∆
=

∫
Q

∫
Ω×G

,

P1(dω)
∆
= Dnr

qr
(dSr)PQ(dqr) · · ·Dn1

q1 (dS1)PQ(dq1),

P2(dω
′
)

∆
= Dq(dω(q), dg(w(q)))PQ(dq).

We then prove the theorem in two steps.

1) Get the bound of∣∣∣∣ρ({(qi, Si)}r
i=1) −

∫
Ω1

ρ({(qi, Si)}r
i=1) P1(dω)

∣∣∣∣ .

For this purpose, we get the upper bound of the fol-
lowing term first:∣∣∣∣ρ({(qi, Si)}r

i=1) − ρ({(qi, Si)}
r,j,q′j
i=1 )

∣∣∣∣
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where {(qi, Si)}
r,j,q′

j

i=1 means that query (qj , Sj) is
changed for another query (q′j , S

′
j), where S′

j refers to

(w(j′)
1 , g(w(j′)

1 )), · · · , (wn′
j
, g(w(j′)

n′
j

)).

To utilize the query-level stability, we divide ρ into
two terms: ρ = ρ1 − ρ2, and discuss either of them
separately, as follows.

ρ1({(qi, Si)}r
i=1)

∆
= Rl

(
f{(qi,Si)}r

i=1

)
=

∫
Ω2

l(f{(qi,Si)}r
i=1

; ω(q), g(ω(q)))P2(dω
′
).

ρ2({(qi, Si)}r
i=1)

∆
= R̂l

(
f{(qi,Si)}r

i=1

)
=

1

r

r∑
i=1

1

ni

ni∑
j=1

l(f{(qi,Si)}r
i=1

; ω
(i)
j , g(ω

(i)
j )).

Based on query-level stability, we can obtain that
∀qj ∈ Q, Sj ∈ (Ω × G)nj , j = 1, · · · , r, q, q′j ∈ Q, S′

j ∈
{Q× (Π×G)n′

j}, (ω(q), g(ω(q))) ∈ Ω×G, the following
inequality holds: ∣∣∣l(f{(qi,Si)}r

i=1
, ω(q), g(ω(q)))

−l(f
{(qi,Si)}

r,j,q′
j

i=1

, ω(q), g(ω(q)))

∣∣∣∣ ≤ 2τ(r). (3)

With (3), as ρ1 is an integral function, the following
inequality holds:

|ρ1({(qi, Si)}r
i=1) − ρ1({(qi, Si)}

r,j,q′j
i=1 )| ≤ 2τ(r). (4)

As for ρ2, we have

|ρ2({(qi, Si)}r
i=1) − ρ2({(qi, Si)}

r,j,q′j
i=1 )|

≤ 1

r

r∑
i=1,i6=j

1

ni

ni∑
j=1

|l(f{(qi,Si)}r
i=1

; ω
(i)
j , g(ω

(i)
j ))

− l(f
{(qi,Si)}

r,j,q′
j

i=1

; ω
(i)
j , g(ω

(i)
j ))|

+
1

r
| 1

nj

nj∑
s=1

l(f{(qi,Si)}
nj
i=1

; ω(j)
s , g(ω(j)

s ))

− 1

n′
j

n′
j∑

s=1

l(f
{(qi,Si)}

r,j,q′
j

i=1

; ω(j′)
s , g(ω(j′)

s ))|

≤ 2τ(r) +
B

r
. (5)

By jointly considering (4) and (5), we obtain:

|ρ({(qi, Si)}r
i=1) − ρ({(qi, Si)}

r,j,q′j
i=1 )| ≤ 4τ(r) +

B

r
.

Based on McDiarmid’s inequality(McDiarmid,
1989), with probability at least 1 − δ over the
samples of {(qi, Si)}r

i=1 in the product space∏r
i=1 {Q × (Ω × G)∞}, we have

ρ({(qi, Si)}r
i=1) ≤

∫
Ω1

ρ({(qi, Si)}r
i=1) P1(dω).

+ (4rτ(r) + B)

√
ln 1

δ

2r
. (6)

2) Get the bound of
∣∣∣∫Ω1

ρ({(qi, Si)}r
i=1)P1(dω)

∣∣∣∫
Ω1

ρ[{(qi, Si)}r
i=1]P1(dω)

=

∫
Ω1

∫
Ω2

[l(f{(qi,Si)}r
i=1

; ω(q), g(ω(q)))] P2(dω
′
) P1(dω)

−
∫

Ω1

l(f{(qi,Si)}r
i=1

; ω
(i)
j , g(ω

(i)
j )) P1(dω)

=

∫
Ω

∫
Ω2

[l(f{(qi,Si)}r
i=1

; ω(q), g(ω(q)))

− l(f{(qi,Si)}r
i=1

; ω
(i)
j , g(ω

(i)
j ))] P2(dω

′
) P1(dω).

=

∫
Ω1

∫
Ω2

[l(f{(qi,Si)}r
i=1

; ω(q), g(ω(q)))

− l(f{(qi,Si)}
r,i,q
i=1

; ω
(q)
j , g(ω

(q)
j ))] P2(dω

′
) P1(dω).

The reason that the last equality holds is as follows.
Because the integral is conducted over all of the sam-
ples, and the samples are i.i.d., we can change the ith
query in the training set for (q, ω(q), g(ω(q))). Then by
further using (3), we have:∣∣∣∣∫

Ω1

ρ[{(qi, Si)}r
i=1]P1(dω)

∣∣∣∣ ≤ 2τ(r). (7)

Merging Eq. (6) and (7) yields the inequality in the
theorem.

5. Case Study

Without loss of generality, we take existing algorithms
of Ranking SVM (Joachims, 2002; Herbrich et al.,
1999) and IRSVM (Cao et al., 2006; Qin et al., 2007)
as examples to show how to analyze the query-level
generalization bound of an algorithm, using the tool
of query-level stability. Both of the two algorithms be-
long to the pariwise case of our probabilistic formula-
tion. It should be noted that the framework is neither
limited to these two algorithms nor to the pair-wise
case, we leave the discussions on other algorithms or
other approaches to our future work.

5.1. Generalization Bound of Ranking SVM

Ranking SVM is widely used in ranking for IR, which
views document pair as associate of the query and min-
imizes:

min
f∈F

1

n

n∑
i=1

lh(f ; zi, yi) + λ‖f‖2
K , (8)

where lh(f ; zi, yi) is the hinge loss, and K is a ker-
nel function in the Reproducing Kernel Hilbert Space
(RKHS).

Using the conventional stability theory (Bousquet &
Elisseeff, 2002), we can get the following lemma which
shows the query-level stability of Ranking SVM.
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Lemma 2. If ∀x ∈ X ,K(x, x) ≤ κ2 < ∞, then
Ranking SVM has query-level stability with coefficient
τ(r) = 4κ2

λr × max∀ni,Si

ni
1
r

∑ r
i=1 ni

.

As for this lemma, we have the following discussions.
(1) When r approaches infinity, suppose the mean and
variance of the distribution of nq are µ and σ2 re-
spectively. Then by the Law of Large Numbers and
Chebyshev’s inequality, ∀0 < δ < 1,∀ε > 0,∃R(ε), if
r > R(ε), with probability at least 1− δ, the following
inequality holds:

max∀ni,Si

ni
1
r

∑r
i=1 ni

≤
1 + σ

µ
√

δ
r

1 − ε
µ

.

Therefore, τ(r) ≤ 4κ2

λr

1+ σ

µ

√
δ
r

1− ε
µ

. That is, τ(r) will ap-

proach zero, with a convergence rate of O( 1√
r
), when

r goes to infinity.

(2) When r is finite (which is the case in practice), we
have no reasonable statistical estimation of the term
max∀ni,Si

ni
1
r

∑ r
i=1 ni

. As a result, we can only get a

loose bound for τ(r) as 4κ2

λ . That is, when r increases
but is still finite, τ(r) does not necessarily decrease.

Based on the above lemma, we can further derive the
generalization bound of Ranking SVM. In particular,
as the function f{(qi,Si)}r

i=1
is learned from the train-

ing samples (q1, S1), · · · , (qr, Sr), there is a constant
C, such that, ∀(q1, S1), · · · , (qr, Sr),

∥∥f{(qi,Si)}r
i=1

∥∥
K

≤
C. Then, ∀(q1, S1), · · · , (qr, Sr), z ∈ Z, y ∈ Y,
lh

(
f{(qi,Si)}r

i=1
, z, y

)
≤ 1 + 2Cκ. By further consid-

ering Theorem 1, we obtain the following theorems.
Theorem 2. If ∀x ∈ X ,K(x, x) ≤ κ2 < ∞,
then for Ranking SVM, ∀δ ∈ (0, 1),∀ε > 0,∃R(ε),
if r > R(ε), then with probability at least 1 − 2δ
over the samples of {(qi, Si)}r

i=1 in the product space∏r
i=1 {Q × (X × X × Y)∞}, we have:

Rl

(
f{(qi,Si)}r

i=1

)
≤ R̂l

(
f{(qi,Si)}r

i=1

)

+
8κ2

λr

1 + σ

µ
√

δ
r

1 − ε
µ

+

 16κ2
1+ σ

µ
√

δ
r

1− ε
µ

+ λ(1 + 2Cκ)

λ


√

ln 1
δ

2r
.

Theorem 3. If ∀x ∈ X , K(x, x) ≤ κ2 < ∞
and we have no constraint on r, then for Ranking
SVM, ∀δ ∈ (0, 1), with probability at least 1 − δ
over the samples of {(qi, Si)}r

i=1 in the product space∏r
i=1 {Q × (X × X × Y)∞}, we only have:

Rl

(
f{(qi,Si)}r

i=1

)
≤ R̂l

(
f{(qi,Si)}r

i=1

)
+

8κ2

λ
+

(
16rκ2 + λ(1 + 2Cκ)

λ

) √
ln 1

δ

2r
.

Theorem 2 states that when the number of training
queries tends to be infinity, with high probability the
empirical query-level risk of Ranking SVM will con-
verge to its expected query-level risk. However, when
the number of training queries is finite, the expected
query-level risk and empirical query-level risk are not
necessarily close to each other, and the bound in The-
orem 3 quantifies the difference, which is an increasing
function of the number of training queries.

5.2. Generalization Bound of IRSVM

In IR application, the numbers of document pairs asso-
ciated with different queries vary largely (See LETOR
or other public dataset). In consideration of this,
IRSVM, studied in (Cao et al., 2006) and (Qin et al.,
2007), is an adaptive version of Ranking SVM to the
IR applications, which minimizes:

min
f∈F

1

r

r∑
i=1

1

ni

ni∑
j=1

lh(f ; z
(i)
j , y

(i)
j )+ ‖ f ‖2

K . (9)

We can prove the query-level stability of IRSVM as
shown in Lemma 3. Due to space limitations, we omit
the proof.

Lemma 3. If ∀x ∈ X ,K(x, x) ≤ κ2 < ∞, then
IRSVM has query-level stability τ(r) = 4κ2

λr .

With a similar analysis to that for Ranking SVM, we
obtain the following theorem.

Theorem 4. If ∀x ∈ X ,K(x, x) ≤ κ2 < ∞, then
for IRSVM, ∀δ ∈ (0, 1), with probability at least 1 − δ
over the samples of {(qi, Si)}r

i=1 in the product space∏r
i=1 {Q × (X × X × Y)∞}, we have:

Rl

(
f{(qi,Si)}r

i=1

)
≤ R̂lh

(
f{(qi,Si)}r

i=1

)
+

8κ2

λr
+

16κ2 + λ(1 + 2Cκ)

λ

√
ln 1

δ

2r
.

The theorem states that when the number of train-
ing queries tends to be infinity, with high probability
the empirical query-level risk of IRSVM will converge
to its expected query-level risk. When the number of
queries is finite, the bound in the theorem quantifies
the difference between the two risks, which is a de-
creasing function of the number of training queries.

Remark 1. By comparing Theorem 2 and Theorem 4,
we can find that the convergence rates of the empiri-
cal query-level risk to the expected query-level risk for
Ranking SVM and IRSVM are the same, i.e. O( 1√

r
).

However, by comparing Theorem 3 to Theorem 4, we
can see that for the case of finite r, the bound of
IRSVM is much tighter than that of Ranking SVM.



Query-Level Stability and Generalization in Learning to Rank

6. Experiments and Discussion

We conducted experiments on Ranking SVM and
IRSVM to verify our theoretical results.

6.1. Query-level Stability

First, we conducted an experiment to compare the
stabilities of Ranking SVM and IRSVM. We ran-
domly sampled 1,200 queries from a search engine’s
data repository, each query associated with hundreds
of documents and their relevance labels. There are
five labels: “perfect”, “excellent”, “good”, “fair”, and
“bad”. We split the queries into three sets: a training
set with 200 queries, a validation set with 500 queries,
and a test set with 500 queries (we denote the test set
as T ). The validation set was used to select the regu-
larization parameter λ for Ranking SVM and IRSVM.

We first trained two ranking models with Ranking
SVM and IRSVM, denoted as f0 and f

′

0 respectively.
Then we randomly deleted one query from the training
set, and trained two new models with Ranking SVM
and IRSVM, denoted as f1 and f

′

1 respectively. We
repeated this process 30 times, and created the mod-
els f1, f2, · · · , f30 an f

′

1, f
′

2, · · · , f
′

30. Then on the test
set, we compared the associate-level loss for f0 with
that for fi, and obtained the difference ∆i for Rank-
ing SVM. Similarly, we computed ∆

′

i for IRSVM.

∆i = max
q∈T

max
z∈Sq

|lh(f0, z
(q), y(q)) − lh(fi, z

(q), y(q))|,

∆
′
i = max

q∈T
max
z∈Sq

|lh(f
′
0, z

(q), y(q)) − lh(f
′
i , z

(q), y(q))|.

According to Definition 1, ∆i can bound from be-
low the query-level stability τ(r)(r = 200) of Ranking
SVM. Similarly, ∆

′

i can bound from below the query-
level stability τ(r)(r = 200) of IRSVM. In this re-
gard, we can compare stabilities of Ranking SVM and
IRSVM by comparing ∆i and ∆

′

i.

We list all the 30 values of ∆i and ∆
′

i in Table 1. From
it, we can see that ∆i is always much larger than ∆

′

i.
The mean (or maximum) value of ∆i over the 30 trials
is 1.23 (or 4.53). It is about more than ten times higher
than the mean (or maximum) value of ∆

′

i, which is
only 0.12 (or 0.27). Furthermore, the variance of ∆i

(i.e. 0.72) is also larger than that of ∆
′

i (i.e. 0.003).
These results indicate that the query-level stability of
RankSVM is not so good as that of IRSVM. (Note
that Lemmas 2 and 3 hold for any r, the number of
training queries. We simply set r = 200.)

6.2. Query-level Generalization Bounds

Next, we compared the performances of Ranking SVM
and IRSVM, to verify the theoretical results on their
query-level generalization bounds.

From Theorems 3 and 4 we can see that the bound for
Ranking SVM is much looser than that for IRSVM,
especially when the number of training queries r is
large but finite. We interpret the result as follow.

The actual empirical risk and expected risk with re-
spect to Ranking SVM are as follows.

R̂lh(f) =
1

n

n∑
i=1

lh(f ; z(i), y(i))), n =

r∑
i=1

ni.

Rlh(f) =

∫
X2×Y

lh(f ; z, y)P (dz, dy).

In the definitions, only document pair but no query
appears, and thus we call them the pair-level risks.
For comparison, we also list the query-level risks for
the learning to rank problem (See also Section 3) where
hinge loss is used as associate-level loss.

R̂lh(f) =
1

r

r∑
i=1

1

ni

ni∑
j=1

lh(f ; z(i), y(i)).

Rlh(f) =

∫
Q

∫
X2×Y

lh(f ; z(q), y(q)) Dq(dz(q), dy(q)) PQ(dq).

By comparing the above formulas, we can clearly see
that what is optimized in Ranking SVM (i.e. the pair-
level risk) is not equal to what should be optimized
(i.e. the query-level risks), unless every training query
has the same number of document pairs, which is not
true in practice. In contrast, it is easy to verify that
what is optimized in IRSVM is exactly the query-level
risk. Therefore, no surprisingly IRSVM has a better
query-level generalization bound.

In summary, the theoretical results indicate that the
performance of Ranking SVM on the test set in terms
of a query-level measure should not be so good as that
of IRSVM. We have verified this through experiments.
We tested the ranking performances of Ranking SVM
(RankSVM for short) and IRSVM on the test set, in
terms of Precision and NDCG. The results are shown
in Figure 1. Furthermore, MAP 1 for Ranking SVM is
0.39 and MAP for IRSVM is 0.41. From the results,
we can see that IRSVM achieves better ranking perfor-
mance than RankSVM, in terms of all the query-level
measures. This is also consistent with the results re-
ported in (Cao et al., 2006) and (Qin et al., 2007).

7. Conclusions

In this paper, we have studied the generalization abil-
ity of learning to rank algorithms for IR. A probabilis-
tic formulation for ranking has been proposed, which
covers ranking algorithms belonging to the pointwise,

1To compute MAP, we treated “perfect”, “excellent”
and “good” as relevant, and “fair” and “bad” as irrelevant.
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Table 1. Comparison of Query-level Stability

i 1 2 3 4 5 6
∆i 3.59 1.14 0.88 0.81 1.84 1.15

∆
′
i 0.07 0.07 0.06 0.06 0.05 0.24

7 8 9 10 11 12
0.89 1.30 0.90 1.42 1.38 1.39
0.18 0.06 0.09 0.08 0.11 0.15

13 14 15 16 17 18
0.56 1.43 1.42 1.01 1.13 1.34
0.11 0.13 0.14 0.11 0.06 0.11

19 20 21 22 23 24
1.04 0.86 0.43 0.51 0.64 0.92
0.08 0.05 0.09 0.20 0.27 0.14

25 26 27 28 29 30
0.50 0.88 4.53 0.99 1.13 0.62
0.18 0.08 0.12 0.09 0.21 0.14

pairwise and listwise approaches. The tool of query-
level stability has been developed, which has been fur-
ther used to analyze the generalization bound of a
ranking algorithm. We have applied the tool to two ex-
isting ranking algorithms (Ranking SVM and IRSVM)
and obtained theoretical results. We have also verified
the correctness of the results by experiments.

As far as we know, this is the first work on query-level
generalization bound of learning to rank algorithms.
There are still many issues to investigate. (1) We have
taken SVM based ranking algorithms as examples. We
will try to obtain similar results for other algorithms,
such as RankBoost. (2) We have focused on the pair-
wise approach. The proposed formulation for ranking
and the tool of query-level stability can also be used
to analyze other approaches. (3) It is worth check-
ing whether new learning to rank algorithms can be
derived under the guide of the theoretical study.
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