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Abstract

Probabilistic grammatical formalisms such as
hidden Markov models (HMMs) and stochas-
tic context-free grammars (SCFGs) have
been extensively studied and widely applied
in a number of fields. Here, we introduce
a new algorithmic problem on HMMs and
SCFGs that arises naturally from protein and
RNA design, and which has not been previ-
ously studied. The problem can be viewed as
an inverse to the one solved by the Viterbi
algorithm on HMMs or by the CKY algo-
rithm on SCFGs. We study this problem
theoretically and obtain the first algorith-
mic results. We prove that the problem is
NP-complete, even for a 3-letter emission al-
phabet, via a reduction from 3-SAT, a re-
sult that has implications for the hardness of
RNA secondary structure design. We then
develop a number of approaches for mak-
ing the problem tractable. In particular, for
HMMs we develop a branch-and-bound al-
gorithm, which can be shown to have fixed-
parameter tractable worst-case running time,
exponential in the number of states of the
HMM but linear in the length of the struc-
ture. We also show how to cast the problem
as a Mixed Integer Linear Program.

1. Introduction

Probabilistic grammatical formalisms such as hidden
Markov models (HMMs) and stochastic context-free
grammars (SCFGs) have found many applications in
areas such as computational biology and natural lan-
guage processing. Because of their intuitive repre-
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sentation, their power to capture some of the essen-
tial relationships present in data, and the existence
of polynomial-time algorithms (such as the Viterbi al-
gorithm) and practical training procedures (such as
the Baum-Welch algorithm), these formalisms have en-
joyed tremendous popularity in the past decades.

Three natural problems for a model have been de-
scribed: the decoding problem (given a model and a
sequence, find the most likely derivation), the evalua-
tion problem (given a model and a sequence, find the
likelihood of the sequence being generated), and the
learning problem (given a set of sequences, learn the
parameters of the underlying model). In this paper,
we identify another natural problem on HMMs and
SCFGs, which is the inverse of the decoding problem:
given a derivation and a model, find a sequence for
which this derivation is the most likely one. Because
the decoding problem is solved by the Viterbi algo-
rithm in HMMs and by the CKY algorithm in SCFGs,
we refer to our problem for these two models as the
Inverse-Viterbi and the Inverse-CKY problem, respec-
tively.

The motivation for our problem comes from protein
and RNA design. The design of biological molecules
with a desired structure is a long sought-after goal in
computational biology. While a number of achieve-
ments have been made in protein structure design,
the problem remains difficult (Butterfoss & Kuhlman,
2005; Park et al., 2004; Pokala & M., 2001). For RNA,
there has been recent interest in secondary structure
design (Breaker, 1996), and a number of fairly suc-
cessful heuristics have been developed to solve this
problem (Hofacker, 1994; Andronescu, 2004; Busch
& Backofen, 2006). Generally, structure design can be
divided into two goals: the positive-design aspect of
finding a sequence that has low energy in the desired
structure, and the negative-design aspect of blocking
the sequence from having low energy in other struc-

1To whom correspondence should be addressed



Inverting the Viterbi Algorithm: An Abstract Framework for Structure Design

tures. While some work has explored the negative-
design aspect in protein structure design (Butterfoss
& Kuhlman, 2005), most work has focused solely on
the positive-design aspect. In RNA secondary struc-
ture design, the positive-design aspect is largely triv-
ial (desired paired positions in the secondary structure
can simply be chosen to be complementary bases) and
the negative-design aspect, which involves attempting
to block erroneous base pairings in other structures, is
central to solving the problem.

Our goal in formulating the Inverse-Viterbi and
Inverse-CKY problems is to simultaneously capture
the positive-design and negative-design aspects of the
design problem. Our framework for viewing design
within the context of HMMs or SCFGs is the follow-
ing. When HMMs (SCFGs) are used for structure
prediction, the emitted string represents the biologi-
cal sequence and the goal is to find the hidden state-
path (derivation tree for SCFGs) that represents the
structure this sequence will adopt. A state-path of
high probability for that sequence is the analogue of a
structure with low energy. By inverting this problem,
we can use the same HMM (SCFG) for design. Now,
a state-path (derivation tree) representing the desired
structure is known and the goal is to find a sequence
which will adopt this structure (i.e. a string for which
this state-path is optimal).

Our Contribution. We have defined a novel prob-
lem (the Inverse-Viterbi problem) on HMMs and its
analogue on SCFGs, that as far as we know has never
been studied before. We show that the problem is NP-
hard for HMMs (and as a result for SCFGs). We then
give approaches for making the problem tractable. In
particular, for HMMs we give a branch-and-bound al-
gorithm. This algorithm can be shown to have fixed-
parameter tractable running time: if there are K
states, the emission alphabet is Σ, the path length is n,
and all of the log-probabilities in the model are greater
than −B (so that there are no 0 transition probabili-
ties and all the probabilities in the model are greater
than e−B) and are defined to a precision δ, then the
branch-and-bound algorithm has worst-case running
time O((2B/δ)K−2nK2|Σ|), which is exponential in
the number of states but linear in the path length. We
also show how to cast the problem as a simple Mixed
Integer Linear Program.

Our hardness proof shows that the RNA secondary
structure design problem is hard in a certain sense:
a polynomial-time algorithm that only depends on
the energy model for RNA secondary structure be-
ing SCFG-like, as is the case for the Zuker energy
model (the most successful model curently available

for RNA secondary structure prediction (Zuker &
Stiegler, 1981)), without making additional assump-
tions on the particular form of the energy model, is
not possible unless P = NP .

In presenting an abstract formulation of the design
problem and giving the theoretical results derived in
this paper, our goal is not to provide methods that
will necessarily be immediately applied to the protein
or RNA structure design problems. Instead, we believe
that the abstract framework given in this paper may
prove to be useful in understanding the design problem
and facilitating the development of new methods for
design. The Inverse-Viterbi and Inverse-CKY prob-
lems are novel and natural problems on HMMs and
SCFGs, and so we believe a theoretical exploration is
interesting in its own right.

2. Problem Description and Hardness
Results

2.1. Definition of the Models

An HMM consists of a set N of K states and an al-
phabet Σ, with N ∩ Σ = ∅. The symbols in Σ are
emitted on transitions between the states. The proba-
bility of emitting the symbol a when transitioning from
the state sk to the state sl is specified by the value of
the parameter pa

sk,sl
. These parameters determine the

HMM. We assume (without loss of generality) that
there is a unique initial state S.

The normalization condition requires that∑
sl∈N

∑
a∈Σ

pa
sk,sl

= 1 for k = 1, . . . ,K

Similarly, an SCFG consists of a set N of K non-
terminal symbols, and a set Σ of terminal symbols,
with N ∩ Σ = ∅. The non-terminals are rewritten
according to a set R of rewriting rules. The prob-
ability of applying each rewriting rule α is specified
by the value of the parameter pα. These parameters
determine the SCFG. We assume (without loss of gen-
erality) that there is a unique starting non-terminal
symbol S.

Every rule α replaces a single non-terminal with a
string γ of non-terminals and terminals:

α = Nk → γ

Here Nk (the terminal symbol being rewritten) is re-
ferred to as the left-hand side of the rule, abbreviated
as l(α).
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The normalization condition requires that∑
{α∈R|l(α)=Nk}

pα = 1, for k = 1 . . . , ,K

We do not insist that the SCFG be in Chomsky Nor-
mal Form (CNF) because in some applications (such
as RNA secondary structure design), the correspon-
dence between the design and inverse problem defined
in this paper may only be natural if the SCFG is not
converted to CNF.

We use boldface letters to indicate sequences of sym-
bols. A state-path of length n in the HMM is written
as π = π1 . . . πn, where each πi is a state in the HMM.
Such a path emits a sequence of n − 1 emission sym-
bols, ω = ω1 . . . ωn−1 where each ωi is a symbol from
Σ. The joint probability of a state-path π and an emis-
sion sequence ω is given by Pr(π,ω) =

∏n−1
i=1 pωi

πi,πi+1
.

It is frequently more convenient to deal with sums
rather than products, and so we work in log-space, tak-
ing qa

s1,s2
:= log(pa

s1,s2
) and therefore log(Pr(π,ω)) =∑n−1

i=1 qωi
πi,πi+1

.

A derivation of length n in the SCFG is the suc-
cessive application of rewriting rules, beginning with
the starting symbol S, which generates a yield ω =
ω1 . . . ωn where each ωi is a symbol from Σ. The
derivation can be summarized in the form of a tree
T . The joint probability of a derivation tree T and
a yield ω is given by Pr(T ,ω) =

∏
α∈R(T ) pα, where

R(T ) denotes the multiset of rewriting rules used to
derive T . As with HMMs, it is convenient to work
instead with the log-probabilities, qα := log pα, which
gives log(Pr(T ,ω)) =

∑
α∈R(T ) qα.

2.2. Definition of the Direct Problem

In the original Viterbi problem, one is given an emis-
sion sequence ω0 from an HMM and the goal is to find
the most likely state-path to have generated ω0: the π
that maximizes the conditional probability given the
emission Pr(π|ω0). Since Pr(π|ω0) = Pr(π,ω0)

Pr(ω0) , and
ω0 is fixed, it is equivalent to simply maximize the
joint probability Pr(π,ω0). The Viterbi problem can
therefore be expressed as: given ω0, find an element of
arg maxπ Pr(π,ω0) (we consider arg max as the set of
all arguments maximizing the function). For an HMM
with K states and an emission of length n, the Viterbi
algorithm finds the best state-path using dynamic pro-
gramming in time O(nK2|Σ|) (Viterbi, 1967).

Similarly, the direct problem for an SCFG is formu-
lated as follows: given a yield ω, find the deriva-
tion tree T which maximizes the joint probability
Pr(T ,ω). In other words, given ω, we find an ele-

ment of arg maxT Pr(T ,ω). The optimal derivation is
referred to as the Viterbi parse of ω. For a deriva-
tion of length n in an SCFG with rewriting rules R in
Chomsky Normal Form, the CKY algorithm finds the
Viterbi parse in time O(n3|R|) (Durbin et al., 1999).
Modified versions of the CKY algorithm can also han-
dle SCFGs in similar forms, such as those used in RNA
structure prediction, with the same time complexity
(for example see (Dowell & Eddy, 2004)).

2.3. Definition of the Inverse Problem

In the Inverse-Viterbi problem, a desired output of
the Viterbi algorithm is known and the goal is to de-
sign an input to the Viterbi algorithm that will re-
turn this output. In mathematical terms the problem
is: given a state-path π0, find an ω so that π0 is in
arg maxπ Pr(π,ω), or determine that none exists.

In an HMM used for structure prediction, the above
definition of the inverse problem captures what it
means to do structure design: one knows the struc-
ture (state-path) and tries to find a sequence that has
a higher score with that structure than with any other
structure. It is important to emphasize that for many
π there will be no such ω. In fact, it can be shown that
only polynomially many paths are designable (Elizalde
& Woods, 2006). This captures the notion that many
structures are not designable: there is no sequence that
will lead to these structures.

To illustrate this distinction, consider the 2-state
HMM shown in Figure 1. Say that the desired state-
path to design is Bn = B . . . B. The most likely emis-
sion given this state-path is an−1 = a . . . a, but when
run on such a path the Viterbi algorithm will not re-
turn Bn. In fact, the only sequence that the Viterbi
algorithm will return Bn on is bn−1. This simple case
illustrates that to design a path of all B’s it is impor-
tant not just to pick emissions likely given this path,
but to simulatenously block other possible paths, in
this case those paths containing A’s. Note further that
the probability of bn−1 being emitted from Bn at ran-
dom is (0.2)n−1. Therefore, neither picking the most
likely emission sequence nor randomly generating se-
quences from the state-path will in general solve the
Inverse-Viterbi problem with probability greater than
exponentially small in the length of the state-path.

We incorporate one generalization into our definition
of the problem of inverting the Viterbi algorithm, be-
cause it seems natural to the design problem. We allow
constraints on the emissions that can be chosen in any
position (given as the Σi below). The algorithms we
develop in this paper handle this generalization with-
out any added complexity.
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Figure 1. A 2-state HMM illustrating the distinction be-
tween the Inverse-Viterbi problem and the trivial problem
of finding the most likely emission from a given state-path.
The 2 states are A and B, while the 2 possible emissions
are a and b. Each transition is marked with the possi-
ble emissions followed by their corresponding probabilities.
In order to design Bn the only possible sequence is bn−1,
which is the least likely sequence to be produced by Bn.

INVERSE-VITERBI:
Input: An HMM, a state-path π0 of length n and for
every position i in 1, . . . , n a set Σi ⊆ Σ giving allowed
emissions at position i.
Output: An ω where each ωi ∈ Σi so that π0 is in
arg maxπ Pr(π,ω), or ∅ if no such ω exists.

Similarly, the inverse problem for an SCFG requires
one to find an input that corresponds to a given out-
put. In other words, given a derivation T0, we would
like to find an ω such that T0 is in arg maxT Pr(T ,ω),
or determine that none exists. Note that this problem
only makes sense if the tree T0 has had all of its
leaves removed (we will call such a tree ”naked”);
in other words, the tree includes the specification of
non-terminals but not the terminal symbols produced.

INVERSE-CKY:
Input: An SCFG, a naked derivation tree T0 that
corresponds to an emitted string of n terminals and
for every position i in 1, . . . , n a set Σi ⊆ Σ giving the
allowed emissions at position i.
Output: An ω where each ωi ∈ Σi so that T0 is in
arg maxT Pr(T ,ω), or ∅ if no such ω exists.

2.4. NP-hardness of the Inverse Problem

We now prove that the Inverse-Viterbi problem is
NP-hard. To do so, we introduce the decision problem
corresponding to Inverse-Viterbi:

DESIGNABLE:
Input: An HMM and a state-path π0

Output: YES if there is an ω so that π0 is in
arg maxπ Pr(π,ω), otherwise NO.

An algorithm that solves Inverse-Viterbi would
also solve Designable and so by proving Designable
is NP-complete, we show that Inverse-Viterbi is
NP-hard.

Theorem 1. Designable is NP-Complete.
Proof. Clearly Designable is in NP so we just need to
show Designable is NP-hard. We do so by presenting a
polynomial-time reduction from 3-SAT to Designable.

In outline, the construction is achieved by creating an
HMM with one component that can emit all possi-
ble non-satisfying assignments for the 3-SAT problem
along with a special state outside of this component
that can emit all binary strings, but that does so with
smaller probability. Because this probability is small,
the path consisting of repeatedly being in the special
state is only designable if a specific sequence of 0’s and
1’s could not possibly be emitted by the component
corresponding to the 3-SAT formula. And such a se-
quence is, by the construction, a satisfying assignment
of the 3-SAT formula.

In full detail, the construction is as follows (see Fig-
ure 2 for an illustration). Assume the 3-SAT formula
consists of m variables and r clauses. The HMM con-
sists of a begin state B, two special states S and T
and r(m + 1) states labelled Xi,j where 1 ≤ i ≤ r and
1 ≤ j ≤ m + 1. The emission alphabet consists of 0,
1, and the special symbol #. The state B transitions
to either S or any of Xi,1 with equal probability, 1

r+1 ,
while emitting #. The state S transitions to itself
while emitting 0 or 1, each with probability 1

2 . The
state T transitions to itself with probability 1 while
emitting #. The r sets of states Xi,1, . . . , Xi,m+1 for
1 ≤ i ≤ r are arranged in independent chains, each
corresponding to the ith clause, that emit all strings
{0, 1}m that do not satisfy the ith clause. Such a chain
is constructed by the following: if the ith clause con-
tains the jth variable un-negated then Xi,j transitions
to Xi,j+1 while emitting 0 with probabilty 1, if the
ith clause contains the jth variable negated then Xi,j

transitions to Xi,j+1 while emitting 1 with probabilty
1, and if the ith clause doesn’t contain the jth variable
then Xi,j transitions to Xi,j+1 while emitting 0 or 1
each with probability 1

2 . Finally, Xi,m+1 transitions
to T while emitting # with probability 1.

The state-path to design is BSm+1. We observe that
the joint probability of this state-path and an emis-
sion sequence of the form #{0, 1}m is ( 1

r+1 )( 1
2 )m, and

that only emissions of this form have non-zero proba-
bility for this state-path. We further observe that the
only other state-path that could emit such a sequence
must be of the form BXi,1 . . . Xi,m+1, and the joint
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probability of such a sequence and such a state-path
is ( 1

r+1 )( 1
2 )m−3 if the emission sequence contains a #

followed by a non-satisfying assignment to the 3-SAT
formula, but the joint probability is zero if the emis-
sion sequence contains a # followed by a satisfying as-
signment. Since ( 1

r+1 )( 1
2 )m−3 > ( 1

r+1 )( 1
2 )m, the only

sequence that could design BSm+1 is a # followed by
a satisfying assignment and therefore BSm+1 is des-
ignable if and only if there is a satisfying assignment
to the 3-SAT formula.

The above construction is done in polynomial time,
and therefore we have successfully given a polynomial
reduction from 3-SAT to Designable.

Corollary 1. Inverse-CKY is NP-hard.

Proof. An HMM can be thought of as an SCFG with
a non-terminal corresponding to each state and a ter-
minal to each letter in the emission alphabet. Every
branching rule rewrites a state as a letter and another
state, so that all derivation trees are right-branching.
Since the problem is hard on HMMs it is also hard on
the extended class of SCFGs.

Figure 2. The reduction from 3-SAT to DESIGNABLE.
Each transition is marked with all non-zero probability
emissions followed by their corresponding probabilities.

3. Algorithmic Results

In this section, we give two approaches for finding a
solution to the inverse problem, a branch-and-bound
algorithm and a formulation of the problem as a Mixed

Integer Linear Program. Both of these are derived
from the same basic approach, based on a set of con-
straints we develop that are satisfied by an ω if and
only if it is a solution to the inverse problem. Below we
first develop these constraints. Similar constraints and
a Mixed Integer Linear Program can be developed for
SCFGs. For reasons of space and simplicity of presen-
tation, we only give the details for HMMs in this sec-
tion. We illustrate the formulation of constraints and
a Mixed Integer Linear Program for an SCFG used for
RNA secondary structure prediction in a supplement.2

3.1. Constraint Formulation

Conceptually, the set of inequalities for HMMs is de-
rived by looking at how the Viterbi algorithm works
and enforcing constraints on ω so that the Viterbi al-
gorithm is forced to return the desired state-path π0.

The Viterbi algorithm calculates an n by K table of
values Mi,s of the best log-probability scores for the
state-path from positions 1 to i with final state s. Be-
cause of the special form of the HMM score, this table
can be filled in iteratively:
(1) M1,S = 0 and M1,s = −∞ for all s 6= S
(2) Mi,s = maxs′(Mi−1,s′ + q

ωi−1
s′,s ) for 2 ≤ i ≤ n and

all s

The best state in the nth position is then read off as
πn ∈ arg maxs(Mn,s), and the earlier ones are read off
by a traceback routine: the best state in position n−1
is an s′ that maximized (Mn−1,s′ + q

ωn−1
s′,πn

), and so on.

From the above we can directly read off the con-
straints on the emission symbol ωi in position i for
1 ≤ i ≤ n − 1, that need to be satisfied in order to
design a state-path with states πi. For the Viterbi
algorithm to return the desired path, we need for
every state in this path to traceback to the previous
state in the desired path and for the last state in this
path to have the best log-probability score:
(3) Mi,πi

+ qωi
πi,πi+1

≥ maxs 6=πi
(Mi,s + qωi

s,πi+1
) for

1 ≤ i ≤ n− 1
(4) Mn,πn ≥ maxs 6=πn(Mn,s)

3.2. Branch-and-Bound Algorithm

What is particularly nice about inequalities (1)-(4) is
that they allow for an inductive method for choosing
possible ωi in an emission sequence based only on the
choices of ωj for 1 ≤ j ≤ i − 1. This is because the
inequality constraining the choice of ωi (inequality 3
above) only depends on the values for Mi,s. And the

2See http://groups.csail.mit.edu/cb/inv viterbi/scfg.pdf
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values for Mi,s only depend on the choices made for
ω1 through ωi−1. This naturally leads to a branch-
and-bound algorithm. Branch-and-bound algorithms
are frequently useful in solving computationally hard
problems. A branch-and-bound algorithm is complete
(it always finds the correct answer) and frequently ef-
ficient on many problem instances.

The branch-and-bound algorithm steps through posi-
tion i from 1 to n−1, at each step maintaining a list of
emission sequences of length i that could be extended
to possible length n − 1 sequences the algorithm will
ultimately return. At each step i, the algorithm forms
emission sequences of length i from the emission se-
quences of length i − 1 stored in the previous stage
by appending possible emission symbols onto the se-
quences from the previous stage. In order to avoid
performing an exhaustive search, at every stage the
algorithm prunes the search space by applying two
elimination rules. The first elimination rule ensures
that for a given length i− 1 sequence from the previ-
ous stage, an ωi is only appended onto this sequence
to form a length i sequence if the traceback constraint
(constraint 3) is satisfied by the choice ωi. The sec-
ond elimination rule examines pairs ω and ω̃ of partial
strings of length i that remain after the application of
the first elimination rule. It eliminates ω due to ω̃, if
given that ω can be extended to a solution to the de-
sign problem, then ω̃ must also be able to be extended
to a solution.

Specifically, the second elimination rule is based
on the following observation. If for all states s,
Mi+1,πi+1 − Mi+1,s is at least as large under ω̃ as
it is under ω (i.e. if for all states s, the relative prefer-
ence of ω̃ for πi to state s is at least as large as that of
ω), then the traceback constraints (inequality 3 above)
on all positions j for j > i and the ending constraints
(inequality 4 above) can only be easier to satisfy when
extending ω̃ than when extending ω.

It is important to note that for the case of a 2-state
HMM the branch-and-bound is an exact polynomial-
time algorithm. This is because there is only one
Mi+1,πi+1 − Mi+1,s value to compare the choices for
ωi on (there is only one state s other than πi at every
position since there are only 2 states to choose from),
and so there is always a best choice for ωi at every
position based on the past choices.

The above branch-and-bound algorithm is exact for
all HMMs, but has no guaranteed worst-case running
time. If we make additional assumptions about our
HMM, however, we can show that the algorithm also
has fixed-parameter tractable running time. Specifi-
cally, we assume that all q values (the log-probabilities)

Algorithm 1 Branch-and-Bound Algorithm
Input: An HMM, a desired state-path π0 of length
n, and for every position i in 1, . . . , n a set Σi ⊆ Σ
giving the allowed emissions at position i
Output: A sequence ω such that π0 is in
arg maxπ Pr(π,ω) or ∅ if no such sequence exists.
Variables: A list Li of all partial sequences of
length i considered at the ith iteration each together
with its corresponding K-vector of values Mi,s.
Initialize: L0 = {(ε,0)}
for i = 1 to n− 1 do

Set Li = ∅
for all (ωi−1,vi−1) ∈ Li−1 and all ωi ∈ Σi do

Form ωi = ωi−1ωi by concatenation
Compute the K-vector vi of values Mi+1,s

Add (ωi, vi) to Li iff Elim Rule 1 doesn’t apply
end for
for all (ωi,vi) ∈ Li do

From vi compute and store the (K − 1)-vector
u of values Mi+1,πi+1 −Mi+1,s for s 6= πi+1

end for
Apply Elim Rule 2 to all pairs of entries of Li

end for
for all (ωn−1,vn−1) ∈ Ln−1 do

if Mn,πn
< maxs 6=πn

(Mn,s) then
Remove (ωn−1,vn−1) from Ln−1

end if
end for
Return: An element of Ln−1 or ∅ if Ln−1 is empty.
Elim Rule 1: Eliminate ωi if Mi,πi

+ qωi
πi,πi+1

<
maxs 6=πi

(Mi,s + qωi
s,πi+1

)
Elim Rule 2: Eliminate ωi due to ω̃i if ω̃i ∈ Li

has (K − 1)-vector u componentwise ≥ that of wi

satisfy q ≥ −B and that there are no zero probabili-
ties in the model. Furthermore, we assume that these
q values have been rounded off to precision δ.

Under these assumptions, we can see that any two val-
ues Mi,s and Mi,s′ satisfy |Mi,s − Mi,s′ | ≤ B. This
follows from the definitions:
Mi,s = maxs′(Mi−1,s′ + q

ωi−1
s′,s ) and

Mi,s′ = maxs(Mi−1,s + q
ωi−1
s,s′ ).

Let the maximum in the expression for Mi,s be at-
tained with s0. Then

Mi,s′ ≥ Mi−1,s0 + q
ωi−1
s0,s′

= Mi−1,s0 + qωi−1
s0,s + (qωi−1

s0,s′ − qωi−1
s0,s )

= Mi,s + (qωi−1
s0,s′ − qωi−1

s0,s ),

so that, upon rearranging,

Mi,s −Mi,s′ ≤ qωi−1
s0,s − q

ωi−1
s0,s′ ≤ 0− (−B) = B,
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and by symmetry, we also get Mi,s′ − Mi,s ≤ B, so
finally, |Mi,s −Mi,s′ | ≤ B.

In particular, only 2B/δ distinct values are possible
for each of the (K−1) possible Mi,πi

−Mi,s values. In
the branch-and-bound algorithm, it is only impossible
to remove either ω or ω̃ (both of length i) due to the
other if they are incomparable: the values one gives for
Mi,πi

−Mi,s are larger for some s and smaller for some
other s. But there are only (2B/δ)K−2 incomparable
values: for two sequences that share the first (K − 2)
Mi,πi−Mi,s values, any values for the last Mi,πi−Mi,s

will make them comparable.

Therefore, in the branch-and-bound algorithm there
are at most (2B/δ)K−2 sequence possibilities that
must be retained at any stage, and so with a care-
ful implementation the running time of the algorithm
is O((2B/δ)K−2nK2|Σ|). This bound is exponential
in the number of states, but linear in the length of
the structure to be designed. (This bound is inde-
pendent of the base used to get the q values (log-
probabilities), because changing the base introduces
a factor into both B and δ that cancels.)

For SCFGs in CNF, a similar idea allows one to obtain
an exact algorithm that runs in polynomial time if
there are only 2 non-terminal symbols. However, the
idea used above for candidate string elimination does
not immediately generalize to SCFGs because of their
non-linear nature; an HMM outputs one symbol per
state, but a non-terminal in an SCFG can generally
end up producing any substring of the output string.

3.3. Casting the Problem as a Mixed Integer
Linear Program

We can also start with the inequalities that must be
satisfied for ω and cast the inverse problem as the
problem of finding a feasible solution to a Mixed In-
teger Linear Program. We provide this simple formu-
lation because it allows both practical and theoretical
tools developed for integer programming to be applied
directly to our problem.

The formulation as a Mixed Integer Linear Program
is done by defining 0-1 variables εi,j , where εi,j = 1
indicates that the jth emission symbol is chosen for
ωi. Enforcing that there is only one emission choice
made at every position is equivalent to requiring∑

j εi,j = 1 for i = 1 to n − 1. Each maximum in
the constraints is replaced by ≥ , while the traceback
constraints are enforced by additional equalities.

Integer Linear Program For HMMs:
Objective: Feasible Solution

Variables:
εi,j , 0-1 valued, for 1 ≤ i ≤ n− 1 and 1 ≤ j ≤ |Σ|
Mi,s, for 1 ≤ i ≤ n and 1 ≤ s ≤ K

Constraints:∑
j εi,j = 1 for all 1 ≤ i ≤ n− 1

εi,j = 0 if j /∈ Σi for all 1 ≤ i ≤ n− 1
M1,S = 0 and M1,s = −∞ for all s 6= S

Mi,s ≥
∑

j εi−1,j(Mi−1,s′ + qj
s′,s) for all s, s′ and all

i ≥ 2
Mi,πi =

∑
j εi−1,j(Mi−1,πi−1 + qj

πi−1,πi
) for all i ≥ 2

Mn,s ≤ Mn,πn for all s 6= πn

4. Simulations

We implemented our branch-and-bound algorithm and
examined its running time on synthetic data in or-
der to demonstrate that in practice the algorithm fre-
quently runs fast when an exhaustive search would be
infeasible. In order to do this, we randomly generated
HMMs by drawing each-transition-emission pair prob-
ability from the uniform distribution and then normal-
izing the values, rounding off to precision δ = 0.01. We
then separately generated both arbitrary state-paths
and designable state-paths at random from this HMM
(the latter by randomly sampling emission sequences
and running the Viterbi algorithm on these sequences)
and timed our branch-and-bound algorithm on these
instances. We found that our algorithm ran signifi-
cantly faster on arbitrary paths, the majority of which
are not designable, than on arbitrary designable paths
(taking milliseconds rather than seconds per run).

Figure 3 shows running times of simulations on ran-
dom designable state-paths for different numbers of
states K and path lengths n, with fixed emission al-
phabet of size |Σ| = 20. For each pair of K and n val-
ues, 10 HMMs were generated at random and for each
of these HMMs, 10 designable paths were generated at
random, as described above. The branch-and-bound
algorithm was then run and the average time to design
a sequence over these 100 runs was recorded. On these
problem instances, the running time of the algorithm
scales roughly linearly with path length n. Interest-
ingly, while the running times initially increased with
increasing K values, the running times were lower for
K = 50 and K = 100 than for K = 20, an observa-
tion that was repeated for multiple experiments. The
longest run of the algorithm took 80 seconds. A so-
lution by exhaustive search would require examining
|Σ|n possible sequences, which for that run would have
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been 20400 sequences. All code was implemented in
Matlab and run on a 3.06 GHz Intel Xeon PC.
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Figure 3. Running times of the branch-and-bound algo-
rithm on designable paths. Simulations shown for number
of states K = 3, 10, 20, 50, 100, path lengths n = 10, 20,
50, 100, 200, 400 and emission alphabet size |Σ| = 20.

5. Conclusions

We have introduced a novel problem on HMMs and
SCFGs, the Inverse-Viterbi problem, inspired by pro-
tein and RNA structure design, and have given a num-
ber of theoretical results for the problem. In partic-
ular, our hardness result demonstrates that a polyno-
mial time algorithm for RNA secondary structure de-
sign that only exploits the general form of the Zuker
energy or similar SCFG models (and not the particu-
lars of a specific model) is not possible unless P = NP .

There are a number of possible extensions to this work.
Developing more efficient algorithms on both HMMs
and SCFGs may be possible and in particular, extend-
ing our branch-and-bound algorithm to SCFGs would
be useful. It is also possible to explore extensions
of the problem to more general probabilistic models
such as Markov Random Fields. The framework given
here may also be useful for developing new algorithms
for design in specific applications. Areas where the
negative-design aspect plays a large role, such as RNA
secondary structure design, are the most likely can-
didates to benefit from such an approach. Given the
widespread use of grammars, the inverse problem we
have defined here may find applications to other fields.
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Jérôme Waldispühl, Mathieu Blanchette, and partic-

ularly Michael Collins for advice and helpful discus-
sions. M. Schnall-Levin is supported by NDSEG and
Hertz Foundation fellowships and L. Chindelevitch is
supported in part by an NSERC PGS-D Scholarship.

References

Andronescu, M. e. a. (2004). A new algorithm for RNA
secondary structure design. Journal of Molecular
Biology, 336, 607–624.

Breaker, R. R. (1996). Are engineered proteins get-
ting competition from RNA? Current Opinion in
Biotechnology, 7, 442–448.

Busch, A., & Backofen, R. (2006). INFO-RNA- a fast
approach to inverse RNA folding. Bioinformatics,
22, 1823–1831.

Butterfoss, G., & Kuhlman, B. (2005). Computer-
based design of novel protein structures. Annual
Review of Biophysics and Biomolecular Structure,
35, 49–65.

Dowell, R., & Eddy, S. (2004). Evaluation of sev-
eral lightweight stochastic context-free grammars for
RNA secondary structure prediction. BMC Bioin-
formatics, 5.

Durbin, R., Eddy, S., Krogh, A., & Mitchison, G.
(1999). Biological sequence analysis: Probablistic
models of proteins and nucleic acids. Cambridge
University Press.

Elizalde, S., & Woods, K. (2006). Bounds on the
number of inference functions of a graphical model.
ArXiv Mathematics e-prints, math/0610233.

Hofacker, I. L. e. a. (1994). Fast folding and compar-
ison of RNA secondary structures. Monatshefte f.
Chemie, 125, 167–188.

Park, S., Yang, X., & Saven, J. G. (2004). Advances
in computational protein design. Current Opinion
in Structural Biology, 14, 487–494.

Pokala, N., & M., H. T. (2001). Review: Protein
design- where we were, where we are, where we’re
going. Journal of Structural Biology, 134, 269–281.

Viterbi, A. J. (1967). Error bounds for convolution
codes and an asymptotically optimum decoding al-
gorithm. IEEE Transactions on Information The-
ory, 13, 260–269.

Zuker, M., & Stiegler, P. (1981). Optimal computer
folding of large RNA sequences using thermodynam-
ics and auxiliary information. Nucleic Acids Re-
search, 9, 133–148.


