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Abstract

This paper uses the notion of algorithmic sta-
bility to derive novel generalization bounds
for several families of transductive regres-
sion algorithms, both by using convexity and
closed-form solutions. Our analysis helps
compare the stability of these algorithms.
It suggests that several existing algorithms
might not be stable but prescribes a tech-
nique to make them stable. It also reports
the results of experiments with local trans-
ductive regression demonstrating the benefit
of our stability bounds for model selection, in
particular for determining the radius of the
local neighborhood used by the algorithm.

1. Introduction

Many learning problems in information extraction,
computational biology, natural language processing
and other domains can be formulated as transductive
inference problems (Vapnik, 1982). In the transduc-
tive setting, the learning algorithm receives both a la-
beled training set, as in the standard induction setting,
and a set of unlabeled test points. The objective is to
predict the labels of the test points. No other test
points will ever be considered. This setting arises in a
variety of applications. Often, the points to label are
known but they have not been assigned a label due
to the prohibitive cost of labeling. This motivates the
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use of transductive algorithms which leverage the un-
labeled data during training to improve learning per-
formance.

This paper deals with transductive regression, which
arises in problems such as predicting the real-valued
labels of the nodes of a known graph in computational
biology, or the scores associated with known docu-
ments in information extraction or search engine tasks.

Several algorithms have been devised for the specific
setting of transductive regression (Belkin et al., 2004b;
Chapelle et al., 1999; Schuurmans & Southey, 2002;
Cortes & Mohri, 2007). Several other algorithms in-
troduced for transductive classification can be viewed
in fact as transductive regression ones as their objec-
tive function is based on the squared loss, e.g., (Belkin
et al.2004a; 2004b). Cortes and Mohri (2007) also gave
explicit VC-dimension generalization bounds for trans-
ductive regression that hold for all bounded loss func-
tions and coincide with the tight classification bounds
of Vapnik (1998) when applied to classification.

This paper presents novel algorithm-dependent gen-
eralization bounds for transductive regression. Since
they are algorithm-specific, these bounds can often be
tighter than bounds based on general complexity mea-
sures such as the VC-dimension. Our analysis is based
on the notion of algorithmic stability.

In Sec. 2 we give a formal definition of the transductive
regression setting and the notion of stability for trans-
duction. Our bounds generalize the stability bounds
given by Bousquet and Elisseeff (2002) for the in-
ductive setting and extend to regression the stability-
based transductive classification bounds of (El-Yaniv
& Pechyony, 2006). Standard concentration bounds
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such as McDiarmid’s bound (McDiarmid, 1989) can-
not be readily applied to the transductive regression
setting since the points are not drawn independently
but uniformly without replacement from a finite set.
Instead, a generalization of McDiarmid’s bound that
holds for random variables sampled without replace-
ment is used, as in (El-Yaniv & Pechyony, 2006).
Sec. 3.1 gives a simpler proof of this bound.

This concentration bound is used to derive a general
transductive regression stability bound in Sec. 3.2. In
Sec. 4, we present the stability coefficients for a family
of local transductive regression algorithms. The anal-
ysis in this section is based on convexity. In Sec. 5, we
study the stability of other transductive regression al-
gorithms (Belkin et al., 2004a; Wu & Schölkopf, 2007;
Zhou et al., 2004; Zhu et al., 2003) based on their
closed form solution and propose a modification to the
seemingly unstable algorithm that makes them stable
and guarantees a non-trivial generalization bound. Fi-
nally, Sec. 6 shows the results of experiments with lo-
cal transductive regression demonstrating the benefit
of our stability bounds for model selection, in partic-
ular for determining the radius of the local neighbor-
hood used by the algorithm. This provides a partial
validation of our bounds and analysis.

2. Definitions

Let us first describe the transductive learning setting.
Assume that a full sample X of m + u examples is
given. The learning algorithm further receives the la-
bels of a random subset S of X of size m which serves
as a training sample. The remaining u unlabeled ex-
amples, xm+1, . . . , xm+u ∈ X, serve as test data. We
denote by X ⊢ (S, T ) a partitioning of X into the
training set S and the test set T . The transductive
learning problem consists of predicting accurately the
labels ym+1, . . . , ym+u of the test examples, no other
test examples will ever be considered (Vapnik, 1998).1

The specific problems where the labels are real-valued
numbers, as in the case studied in this paper, is that
of transduction regression. It differs from the standard
(induction) regression since the learning algorithm is
given the unlabeled test examples beforehand and can
thus exploit this information to improve performance.

We denote by c(h, x) the cost of an error of a hypoth-

1Another natural setting for transduction is one where
the training and test samples are both drawn according to
the same distribution and where the test points, but not
their labels, are made available to the learning algorithm.
However, as pointed out by Vapnik (1998), any generaliza-
tion bound in the setting we analyze directly yields a bound
for this other setting, essentially by taking the expectation.

esis h on a point x labeled with y(x). The cost func-
tion commonly used in regression is the squared loss
c(h, x) = (h(x) − y(x))2. In the remaining of this pa-
per, we will assume a squared loss but many of our
results generalize to other convex cost functions. The
training and test errors of h are respectively R̂(h) =
1
m

∑m
k=1 c(h, xk) and R(h) = 1

u

∑u
k=1 c(h, xm+k). The

generalization bounds we derive are based on the no-
tion of transductive algorithmic stability.

Definition 1 (Transduction β-stability). Let L be a
transductive learning algorithm and let h denote the
hypothesis returned by L for X ⊢(S, T ) and h′ the hy-
pothesis returned for X ⊢(S′, T ′). L is said to be uni-
formly β-stable with respect to the cost function c if
there exists β ≥ 0 such that for any two partitionings
X ⊢(S, T ) and X ⊢(S′, T ′) that differ in exactly one
training (and thus test) point and for all x ∈ X,

∣∣c(h, x) − c(h′, x)
∣∣ ≤ β. (1)

3. Transduction Stability Bounds

3.1. Concentration Bound for Sampling
without Replacement

Stability-based generalization bounds in the inductive
setting are based on McDiarmid’s inequality (1989).
In the transductive setting, the points are drawn uni-
formly without replacement and thus are not indepen-
dent. Therefore, McDiarmid’s concentration bound
cannot be readily used. Instead, a generalization of
McDiarmid’s bound for sampling without replacement
is needed as in El-Yaniv and Pechyony (2006).

We will denote by Sm
1 a sequence of random vari-

ables S1, . . . , Sm and write Sm
1 = xm

1 as a short-
hand for the m equalities Si = xi, i = 1, . . . ,m and
Pr[xm

i+1|xi−1
1 , xi]=Pr[Sm

i+1 =xm
i+1|Si−1

1 =xi−1
1 , Si =xi].

Theorem 1 ((McDiarmid, 1989), 6.10). Let Sm
1 be

a sequence of random variables, each Si taking values
in the set X, and assume that a measurable function
φ : Xm 7→ R satisfies: ∀i ∈ [1,m],∀xi, x

′
i ∈ X,

˛̨
˛ESm

i+1

h
φ|Si−1

1 , Si = xi

i
− ESm

i+1

h
φ|Si−1

1 , Si = x
′

i

i˛̨
˛ ≤ ci.

Then, ∀ǫ > 0, Pr [|φ − E [φ] | ≥ ǫ] ≤ 2 exp

„
−2ǫ2P
m

i=1 c2
i

«
.

The following is a concentration bound for sampling
without replacement needed to analyze the general-
ization of transductive algorithms.

Theorem 2. Let xm
1 be a sequence of random vari-

ables, sampled from an underlying set X of m + u el-
ements without replacement, and let that φ : Xm 7→ R
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be a symmetric function such that for all i ∈ [1,m] and
for all x1, . . . , xm ∈ X and x′

1, . . . , x
′
m ∈ X,

˛̨
φ(x1, . . . , xm) − φ(x1, . . . , xi−1, x

′

i, xi+1, . . . , xm)
˛̨
≤ c.

Then, ∀ǫ > 0, Pr
ˆ˛̨

φ − E [φ]
˛̨
≥ ǫ

˜
≤ 2 exp

„
−2ǫ2

α(m, u)c2

«
,

where α(m,u) = mu
m+u−1/2 · 1

1−1/(2 max{m,u}) .

Proof. For a fixed i ∈ [1,m], let g(Si−1
1 ) =

ESm

i+1

ˆ
φ|Si−1

1 , Si =xi

˜
− ESm

i+1

ˆ
φ|Si−1

1 , Si =x′

i

˜
. Then,

g(xi−1
1 ) =

∑
xm

i+1

φ(xi−1
1 , xi,x

m
i+1) Pr[xm

i+1|xi−1
1 , xi] −∑

x′m

i+1

φ(xi−1
1 , x′

i,x
′m
i+1) Pr[x′m

i+1|xi−1
1 , x′

i].

For uniform sampling without replacement,
the probability terms can be written as:
Pr

ˆ
xm

i+1|xi−1
1 , xi

˜
=

Q
m−1
k=i

1
m+u−k

= u!
(m+u−i)!

.

Thus, g(xi−1
1 ) = u!

(m+u−i)!
[
P

xm

i+1
φ(xi−1

1 , xi,x
m
i+1) −

P
x′m

i+1
φ(xi−1

1 , x′

i,x
′m

i+1)]. To compute the expression

between brackets, we divide the set of permutations
{x′m

i+1} into two sets, those that contain xi and those
that do not. If a permutation x′m

i+1 contains xi we

can write it as x′k−1
i+1 xix

′m
k+1, where k is such that

x′
k = xi. We then match it up with the permutation

xix
′k−1
i+1 x′m

k+1 from the set {xix
m
i+1}. These two

permutations contain exactly the same elements, and
since the function φ is symmetric in its arguments,
the difference in the value of the function on the
permutations is zero.

In the other case, if a permutation x′m
i+1 does not

contain the element xi, then we simply match it up
with the same permutation in {xm

i+1}. The match-
ing permutations appearing in the summation are then
xix

′m
i+1 and x′

ix
′m
i+1 which clearly only differ with re-

spect to xi. The difference in the value of the func-
tion φ in this case can be bounded by c. The num-
ber of such permutations is (m − i)!

(
m+u−(i+1)

m−i

)
=

(m+u−i−1)!
(u−1)! , which leads to the following upper bound:

∑
xm

i+1

φ(xi−1
1 , xi,x

m
i+1) − ∑

x′m

i+1

φ(xi−1
1 , x′

i,x
′m
i+1) ≤

(m+u−i−1)!
(u−1)! c, which implies that |g(xi−1

1 )| ≤ u!
(m+u−i)! ·

(m+u−i−1)!
(u−1)! c ≤ u

m+u−ic. Then, combining Theorem 1

with the identity
∑m

i=1
1

(m+u−i)2 ≤ m
m+u−1/2

1
u−1/2 ,

yields that Pr
[∣∣φ − E [φ]

∣∣ ≥ ǫ
]
≤ 2 exp

(
−2ǫ2

αu(m,u)c2

)
,

where αu(m,u) = mu
m+u−1/2 · 1

1−1/(2u) . The function

φ is symmetric in m and u in the sense that selecting
one of the sets uniquely determines the other set. The
statement of the theorem then follows from a similar
bound with αm(m,u) = mu

m+u−1/2 · 1
1−1/(2m) , taking

the tighter of the two.

3.2. Transductive Stability Bound

To obtain a general transductive regression stability
bound, we apply the concentration bound of Theo-
rem 2 to the random variable φ(S) = R(h)− R̂(h). To
do so, we need to bound ES [φ(S)], where S is a ran-
dom subset of X of size m, and |φ(S) − φ(S′)| where
S and S′ are samples differing by exactly one point.

Lemma 1. Let H be a bounded hypothesis set (∀x ∈
X, |h(x) − y(x)| ≤ B) and L a β-stable algorithm re-
turning the hypotheses h and h′ for two training sets S
and S of size m each, respectively, differing in exactly
one point. Then,

|φ(S) − φ(S′)| ≤ 2β + B2(m + u)/(mu). (2)

Proof. By definition, S and S′ differ exactly in one
point. Let xi ∈ S, xm+j ∈ S′ be the points in which
the two sets differ. The lemma follows from the obser-
vation that for each one of the m− 1 common labeled
points in S and S′, and for each one of the u − 1
common test points in T and T ′ (recall T = X \ S,
T ′ = X \ S′), the difference in cost is bounded by
β, while for xi and xm+j , the difference in cost is
bounded by B2. Then, it follows that |φ(S)−φ(S′)| ≤
(u−1)β

u + (m−1)β
m + B2

u + B2

m ≤ 2β + B2
(

1
u + 1

m

)
.

Lemma 2. Let h be the hypothesis returned by a β-
stable algorithm L. Then, |ES [φ(S)] | ≤ β.

Proof. By definition of φ(S), its expectation is
1
u

P
u

k=1 ES [c(h, xm+k)] − 1
m

P
m

k=1 ES [c(h, xk)]. Since
ES [c(h, xm+j)] is the same for all j ∈ [1, u], and
ES [c(h, xi)] the same for all i ∈ [1,m], for any i
and j, ES [φ(S)] = ES [c(h, xm+j)] − ES [c(h, xi)] =
ES′ [c(h′, xi)] − ES [c(h, xi)]. Thus, ES [φ(S)] =
ES,S′∼X [c(h′, xi) − c(h, xi)] ≤ β.

Theorem 3. Let H be a bounded hypothesis set (∀x ∈
X, |h(x)− y(x)| ≤ B) and L a β-stable algorithm. Let
h be the hypothesis returned by L when trained on X ⊢
(S, T ). Then, for any δ > 0, with prob. at least 1 − δ,

R(h) ≤ R̂(h)+β+

(
2β +

B2(m + u)

mu

) √
α(m,u) ln 1

δ

2
.

Proof. The result follows directly from Theorem 2 and
Lemmas 1 and 2.

This is a general bound that applies to any transduc-
tive algorithm. To apply it, the stability coefficient β,
which depends on m and u, needs to be determined. In
the subsequent sections, we derive bounds on β for a
number of transductive regression algorithms (Cortes
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& Mohri, 2007; Belkin et al., 2004a; Wu & Schölkopf,
2007; Zhou et al., 2004; Zhu et al., 2003).

4. Stability of Local Transductive

Regression Algorithms

This section describes and analyzes a general family
of local transductive regression algorithms (LTR) gen-
eralizing the algorithm of Cortes and Mohri (2007).

LTR algorithms can be viewed as a generalization of
the so-called kernel regularization-based learning al-
gorithms to the transductive setting. The objective
function that they minimize is of the form:

F (h, S) = ‖h‖2
K

+
C

m

mX

k=1

c(h, xk)+
C′

u

uX

k=1

ec(h, xm+k), (3)

where ‖·‖K is the norm in the reproducing kernel
Hilbert space (RKHS) with associated kernel K, C ≥ 0
and C ′ ≥ 0 are trade-off parameters, and c̃(h, x) =
(h(x) − ỹ(x))2 is the error of the hypothesis h on the
unlabeled point x with respect to a pseudo-target ỹ.

Pseudo-targets are obtained from neighborhood labels
y(x) by a local weighted average. Neighborhoods can
be defined as a ball of radius r around each point in
the feature space. We will denote by βloc the score-
stability coefficient of the local algorithm used, that
is the maximal amount by which the two hypotheses
differ on an given point, when trained on samples dis-
agreeing on one point. This notion is stronger than
that of cost-based stability.

In this section, we use the bounded-labels assumption,
that is ∀x ∈ S, |y(x)| ≤ M . We also assume that
for any x ∈ X, K(x, x) ≤ κ2. We will use the fol-
lowing bound based on the reproducing property and
the Cauchy-Schwarz inequality valid for any hypothe-
sis h ∈ H : ∀x ∈ X,

|h(x)|= |〈h, K(x, ·)〉| ≤ ‖h‖
K

p
K(x, x) ≤ κ‖h‖

K
. (4)

Lemma 3. Let h be the hypothesis minimizing (3).
Assume that for any x ∈ X, K(x, x) ≤ κ2. Then, for
any x ∈ X, |h(x)| ≤ κM

√
C + C ′.

Proof. The proof is a straightforward adaptation of
the technique of (Bousquet & Elisseeff, 2002) to LTR al-
gorithms. By Eqn. 4, |h(x)| ≤ κ‖h‖K . Let 0 ∈ R

m+u

be the hypothesis assigning label zero to all examples.
By definition of h,

F (h, S) ≤ F (0, S) ≤ (C + C
′)M2

.

Using ‖h‖K ≤
√

F (h, S) yields the statement.

Since |h(x)| ≤ κM
√

C + C ′, this immediately gives us
a bound on |h(x) − y(x)| ≤ M(1 + κ

√
C + C ′). Thus,

we are in a position to apply Theorem 3 with B = AM ,
A = 1 + κ

√
C + C ′.

We now derive a bound on the stability coefficient β.
To do so, the key property we will use is the convexity
of h 7→ c(h, x). Note, however, that in the case of c̃, the
pseudo-targets may depend on the training set S. This
dependency matters when we wish to apply convexity
with two hypotheses h and h′ obtained by training on
different samples S and S′. For convenience, for any
two such fixed hypotheses h and h′, we extend the
definition of c̃ as follows. For all t ∈ [0, 1],

c̃(th+(1−t)h′, x) =
(
(th+(1−t)h′)(x)−(tỹ+(1−t)ỹ′)

)2
.

This allows us to use the same convexity property for
c̃ as for c for any two fixed hypotheses h and h′, as
verified by the following lemma, and does not affect
the proofs otherwise.

Lemma 4. Let h be a hypothesis obtained by training
on S and h′ by training on S′. Then, for all t ∈ [0, 1],

tc̃(h, x) + (1 − t)c̃(h′, x) ≥ c̃(th + (1 − t)h′, x). (5)

Proof. Let ỹ = ỹ(x) be the pseudo-target value at x
when the training set is S and ỹ′ = ỹ′(x) when the
training set is S′. For all t ∈ [0, 1],

tc(h, x) + (1 − t)c(h′
, x) − c(th + (1 − t)h′

, x)

= t(h(x) − ey)2 + (1 − t)(h′(x) − ey′)2

−
ˆ
t(h(x) − ey) + (1 − t)(h′(x) − ey′)

˜2
.

The statement of the lemma follows directly by the
convexity of x 7→ x2 over real numbers.

Let h be a hypothesis obtained by training on
S and h′ by training on S′. Let ∆ = h −
h′. Then, for all x ∈ X, |c(h, x) − c(h′, x)| =
|∆(x) ((h(x) − y(x)) + (h′(x) − y(x))) | ≤ 2M(1 +
κ
√

C + C ′)|∆(x)|. As in 4, for all x ∈ X, |∆(x)| ≤
κ‖∆‖K , thus for all x ∈ X,

|c(h, x) − c(h′
, x)| ≤ 2M(1 + κ

√
C + C′)κ‖∆‖

K
. (6)

Lemma 5. Assume that for all x ∈ X, |y(x)| ≤ M .
Let S and S′ be two samples differing by exactly one
point. Let h be the hypothesis returned by the algorithm
minimizing the objective function F (h, S), h′ be the
hypothesis obtained by minimization of F (h, S′) and
let ỹ and ỹ′ be the corresponding pseudo-targets. Then,

C [c(h′, xi) − c(h, xi)] /m − C ′ [c̃(h′, xi) − c̃(h, xi)] /u

≤ 2AM (κ‖∆‖K (C/m + C ′/u) + βlocC
′/u) .

where ∆ = h′ − h and A = 1 + κ
√

C + C ′.
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Proof. Let c̃(hi, ỹi) = c̃(h, xi) and c̃(h′
i, ỹ

′
i) = c̃(h′, xi).

By Lemma 3 and the bounded-labels assumption,

|c̃(h′
i, ỹ

′
i) − c̃(hi, ỹi)|

= |c̃(h′
i, ỹ

′
i) − c̃(h′

i, ỹi) + c̃(h′
i, ỹi) − c̃(hi, ỹi)|

≤ |(ỹ′
i − ỹi)(ỹ

′
i + ỹi − 2h′

i)| + |(h′
i − hi)(h

′
i + hi − 2ỹi)| .

By the score-stability of local estimates, ỹ′(xi) −
ỹ(xi) ≤ βloc. Thus,

|c̃(h′
i, ỹ

′
i) − c̃(hi, ỹi)| ≤ 2AM(βloc + κ‖∆‖K). (7)

Using 6 leads after simplification to the statement of
the lemma.

The proof of the following theorem is based on
Lemma 4 and Lemma 5 and is reserved to a longer
version of this paper.

Theorem 4. Assume that for all x ∈ X, |y(x)| ≤ M
and there exists κ such that ∀x ∈ X, K(x, x) ≤ κ2.
Further, assume that the local estimator has uniform
stability coefficient βloc. Let A = 1+κ

√
C + C ′. Then,

LTR is uniformly β-stable with

β ≤ 2(AM)2κ2

[
C

m
+

C ′

u
+

√(
C

m
+

C ′

u

)2

+
2C ′βloc

AMκ2u

]
.

Our experiments with LTR will demonstrate the benefit
of this bound for model selection (Sec. 6).

5. Stability Based on Closed-Form

Solutions

5.1. Unconstrained Regularization Algorithms

In this section, we consider a family of transductive
regression algorithms that can be formulated as the
following optimization problem:

min
h

hT Qh + (h − y)T C(h − y). (8)

Q ∈ R
(m+u)×(m+u) is a symmetric regularization ma-

trix, C ∈ R
(m+u)×(m+u) is a symmetric matrix of em-

pirical weights (in practice it is often a diagonal ma-
trix), y ∈ R

(m+u)×1 are the target values of the m
labeled points together with the pseudo-target values
of the u unlabeled points (in some formulations, the
pseudo-target value is 0), and h ∈ R

(m+u)×1 is a col-
umn vector whose ith row is the predicted target value
for the xi. The closed-form solution of (8) is given by

h = (C−1Q + I)−1y. (9)

The formulation (8) is quite general and includes as
special cases the algorithms of (Belkin et al., 2004a;

Wu & Schölkopf, 2007; Zhou et al., 2004; Zhu et al.,
2003). We present a general framework for bounding
the stability coefficient of these algorithms and then
examine the stability coefficient of each of these algo-
rithms in turn.

For a symmetric matrix A ∈ R
n×n we will denote by

λM (A) its largest eigenvalue and λm(A) its smallest.
Then, for any v ∈ R

n×1, λm(A)‖v‖2 ≤ ‖Av‖2 ≤
λM (A)‖v‖2. We will also use in the proof of the fol-
lowing proposition the fact that for symmetric matri-
ces A,B ∈ R

n×n, λM (AB) ≤ λM (A)λM (B).

Proposition 1. Let h and h′ solve (8), under test
and training sets that differ exactly in one point and
let C,C′,y,y′ be the analogous empirical weight and
the target value matrices. Then,

‖h′−h‖2 ≤ ‖y′ − y‖2

λm(Q)
λM (C) + 1

+
λM (Q)‖C′−1 − C−1‖2 ‖y‖2(

λm(Q)
λM (C′) + 1

) (
λm(Q)
λM (C) + 1

) .

Proof. Let ∆ = h′ − h and ∆y = y′ − y. Let C =
(C−1Q + I) and C

′ = (C′−1
Q + I). By definition,

∆ = C
′−1

y′ − C
−1y

= C
′−1

∆y + (C′−1 − C
−1)y

= C
′−1

∆y + (C−1
[
(C−1 − C′−1

)Q
]
C
′−1

)y.

Thus, ‖∆‖2 ≤ ‖∆y‖2

λm(C)
+

λM (Q)‖C′−1 − C−1‖2 · ‖y‖2

λm(C′)λm(C)
.

(10)

Furthermore, λm(C) ≥ λm(Q)
λM (C)+1. Plugging this bound

back into Eqn. 10 yields:

‖∆‖2 ≤ ‖∆y‖2

λm(Q)
λM (C) + 1

+
λM (Q)‖C′−1 − C−1‖2‖y‖2(

λm(Q)
λM (C′) + 1

) (
λm(Q)
λM (C) + 1

) .

Since ‖h′ − h‖∞ is bounded by ‖h′ − h‖2, the propo-
sition provides a bound on the score-stability of h for
the transductive regression algorithms of Zhou et al.
(2004); Wu and Schölkopf (2007); Zhu et al. (2003).
For each of these algorithms, the pseudo-targets used
are zero. If we make the bounded labels assumption
(∀x∈X, |y(x)| ≤ M , for some M >0), it is not difficult
to show that ‖y − y′‖2 ≤

√
2M and ‖y‖2 ≤ √

mM .
We now examine each algorithm in turn.

Consistency method (CM) In the CM algo-
rithm (Zhou et al., 2004), the matrix Q is a normal-
ized Laplacian of a weight matrix W ∈ R

(m+u)×(m+u)

that captures affinity between pairs of points in the
full sample X. Thus, Q = I − D−1/2WD−1/2, where
D ∈ R

(m+u)×(m+u) is a diagonal matrix, with [D]i,i =
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∑
j [W]i,j . Note that λm(Q) = 0. Furthermore, ma-

trices C and C′ are identical in CM, both diagonal ma-
trices with (i, i)th entry equal to a positive constant
µ > 0. Thus C−1 = C′−1 and using Prop. 1, we ob-
tain the following bound on the score-stability of the
CM algorithm: βCM ≤

√
2M .

Local learning regularization (LL− Reg) In the
LL− Reg algorithm (Wu & Schölkopf, 2007), the
regularization matrix Q is (I − A)T (I − A), where
I ∈ R

(m+u)×(m+u) is an identity matrix and A ∈
R

(m+u)×(m+u) is a non-negative weight matrix that
captures the local similarity between all pairs of points
in X. A is normalized, i.e. each of its rows sum to
1. Let Cl, Cu > 0 be two positive constants. The
matrix C is a diagonal matrix with [C]i,i = Cl if
xi ∈ S and Cu otherwise. Let Cmax = max{Cl, Cu}
and Cmin = min{Cl, Cu}. Thus, ‖C′−1 − C−1‖2 =√

2
(

1
Cmin

− 1
Cmax

)
. By the Perron-Frobenius theo-

rem, its eigenvalues lie in the interval (−1, 1] and
λM (A) ≤ 1. Thus, λm(Q) ≥ 0 and λM (Q) ≤
4 and we have the following bound on the score-
stability of the LL− Reg algorithm: βLL−Reg ≤

√
2M +

4
√

mM
(

1
Cmin

− 1
Cmax

)
≤

√
2M + 4

√
mM

Cmin
.

Gaussian Mean Fields algorithm GMF (Zhu et al.,
2003) is very similar to the LL− Reg, and admits ex-
actly the same stability coefficient.

Thus, the stability coefficients of the algorithms of
CM, LL− Reg, and GMF can be large. Without addi-
tional constraints on the matrix Q, these algorithms
do not seem to be stable enough for the generalization
bound of Theorem 3 to converge. A particular exam-
ple of constraint is the condition

∑m+u
i=1 h(xi) = 0 used

by Belkin et al.’s algorithm (2004a). In the next sec-
tion, we give a generalization bound for this algorithm
and then describe a general method for making the
algorithms just examined stable.

5.2. Stability of Constrained Regularization
Algorithms

This subsection analyzes constrained regularization al-
gorithms such as the Laplacian-based graph regular-
ization algorithm of Belkin et al. (2004a). Given a
weighted graph G = (X,E) in which edge weights
represent the extent of similarity between vertices, the
task consists of predicting the vertex labels. The hy-
pothesis h returned by the algorithm is solution of the

following optimization problem:

min
h∈H

h
T
Lh +

C

m

mX

i=1

(h(xi) − yi)
2

subject to:

m+uX

i=1

h(xi) = 0,

(11)

where L ∈ R
(m+u)×(m+u) is a smoothness matrix, e.g.,

the graph Laplacian, {yi | i ∈ [1,m]} are the target
values of the m labeled nodes.

The hypothesis set H in this case can be thought of
as a hyperplane in R

m+u that is orthogonal to the
vector 1 ∈ R

m+u. Maintaining the notation used in
(Belkin et al., 2004a), we let PH denote the operator
corresponding to the orthogonal projection on H. For
a sample S drawn without replacement from X, define
IS ∈ R

(m+u)×(m+u) to be the diagonal matrix with
[IS ]i,i = 1 if xi ∈ S and 0 otherwise. Similarly, let
yS ∈ R

(m+u)×1 be the column vector with [yS ]i,1 = yi

if xi ∈ S and 0 otherwise. The closed-form solution on
a training sample S is given by (Belkin et al., 2004a):

hS =
“
PH

“
m

C
L + IS

””
−1

yS . (12)

Theorem 5. Assume that the vertex labels of the
graph G = (X,E) and the hypothesis h obtained by
optimizing Eqn. 11 are both bounded (∀x, |h(x)| ≤ M
and |y(x)| ≤ M for some M > 0). Let A = 1 + κ

√
C.

Then, for any δ > 0, with probability at least 1 − δ,

R(h) ≤ bR(h) + β +

„
2β +

(AM)2(m + u)

mu

« s
α(m, u) ln 1

δ

2
,

with α(m,u) = mu
m+u−1/2 · 1

1−1/(2 max{m,u}) and β ≤
(4
√

2M2)/(mλ2/C − 1) + (4
√

2mM2)/(mλ2/C − 1)2,
λ2 is the second smallest eigenvalue of the Laplacian.

Proof. The proof is similar to that of (Belkin et al.,
2004a) but uses our general transductive regression
bound instead.

The generalization bound we just presented differs in
several respects from that of Belkin et al.(2004a). Our
bound explicitly depends on both m and u while theirs
shows only a dependency on m. Also, our bound does
not depend on the number of times a point is sampled
in the training set (parameter t), thanks to our analysis
based on sampling without replacement.

Contrasting the stability coefficient of Belkin’s algo-
rithm with the stability coefficient of LTR (Theorem 4),
we note that it does not depend on C ′ and βloc. This
is because unlabeled points do not enter the objec-
tive function, and thus C ′ = 0 and ỹ(x) = 0 for all
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x ∈ X. However, the stability does depend on the sec-
ond smallest eigenvalue λ2 and the bound diverges as
λ2 approaches C

m . In all our regression experiments,
we observed that this algorithm does not perform as
well in comparison with LTR.

5.3. Making Seemingly Unstable Algorithms
Stable

In Sec. 5.2, we saw that imposing additional con-
straints on the hypothesis, e.g., h · 1 = 0, allowed one
to derive non-trivial stability bounds. This idea can
be generalized and similar non-trivial stability bounds
can be derived for “stable” versions of the algorithms
presented in Sec. 5.1 CM, LL− Reg, and GMF. Recall
that the stability bound in Prop. 1 is inversely propor-
tional to the smallest eigenvalue λm(Q). The main dif-
ficulty with using the proposition for these algorithms
is that λm(Q) = 0 in each case. Let vm denote the
eigenvector corresponding to λm(Q) and let λ2 be the
second smallest eigenvalue of Q. One can modify (8)
and constrain the solution to be orthogonal to vm by
imposing h · vm = 0. In the case of (Belkin et al.,
2004a), vm = 1. This modification, motivated by the
algorithm of (Belkin et al., 2004a), is equivalent to
increasing the smallest eigenvalue to be λ2.

As an example, by imposing the additional constraint,
we can show that the stability coefficient of CM becomes
bounded by O(C/λ2), instead of Θ(1). Thus, if C =
O(1/m) and λ2 = Ω(1), it is bounded by O(1/m) and
the generalization bound converges as O(1/m).

6. Experiments

6.1. Model Selection Based on Bound

This section reports the results of experiments using
our stability-based generalization bound for model se-
lection for the LTR algorithm. A crucial parameter
of this algorithm is the stability coefficient βloc(r) of
the local algorithm, which computes pseudo-targets ỹx

based on a ball of radius r around each point. We de-
rive an expression for βloc(r) and show, using extensive
experiments with multiple data sets, that the value r∗

minimizing the bound is a remarkably good estimate
of the best r for the test error. This demonstrates the
benefit of our generalization bound for model selection,
avoiding the need for a held-out validation set.

The experiments were carried out on several publicly
available regression data sets: Boston Housing, Ele-
vators and Ailerons2. For each of these data sets, we
used m = u, inspired by the observation that, all other

2www.liaad.up.pt/~ltorgo/Regression/DataSets.html.

parameters being fixed, the bound of Theorem 3 is
tightest when m = u. The value of the input variables
were normalized to have mean zero and variance one.
For the Boston Housing data set, the total number of
examples was 506. For the Elevators and the Ailerons
data set, a random subset of 2000 examples was used.
For both of these data sets, other random subsets of
2000 samples led to similar results. The Boston Hous-
ing experiments were repeated for 50 random parti-
tions, while for the Elevators and the Ailerons data
set, the experiments were repeated for 20 random par-
titions each. Since the target values for the Elevators
and the Ailerons data set were extremely small, they
were scaled by a factor 1000 and 100 respectively in a
pre-processing step.

In our experiments, we estimated the pseudo-target
of a point x′ ∈ T as a weighted average of the la-
beled points x ∈ N(x′) in a neighborhood of x′. Thus,
ỹx′ =

∑
x∈N(x′) αxyx/

∑
x∈N(x′) αx. Weights are de-

fined in terms of a similarity measure K(x, x′) cap-
tured by a kernel K: αx = K(x, x′). Let m(r) be
the number of labeled points in N(x′). Then, it is
easy to show that βloc ≤ 4αmaxM/(αminm(r)), where
αmax = maxx∈N(x′) αx and αmin = minx∈N(x′) αx.
Thus, for a Gaussian kernel with parameter σ, βloc ≤
4M/(m(r)e−2r2/σ2

). To estimate βloc, one needs an
estimate of m(r), the number of samples in a ball of
radius r from an unlabeled point x′. In our experi-
ments, we estimated m(r) as the number of samples
in a ball of radius r from the origin. Since all fea-
tures are normalized to mean zero and variance one,
the origin is also the centroid of the set X.

We implemented a dual solution of LTR and used Gaus-
sian kernels, for which, the parameter σ was selected
using cross-validation on the training set. Experiments
were repeated across 36 different pairs of values of
(C,C ′). For each pair, we varied the radius r of the
neighborhood used to determine estimates from zero
to the radius of the ball containing all points.

Figure 1(a) shows the mean values of the test MSE of
our experiments on the Boston Housing data set for
typical values of C and C ′. Figures 1(b)-(c) show sim-
ilar results for the Ailerons and Elevators data sets.
For the sake of comparison, we also report results for
induction. The relative standard deviations on the
MSE are not indicated, but were typically of the order
of 10%. LTR generally achieves a significant improve-
ment over induction.

The generalization bound we derived in Eqn. 3 con-
sists of the training error and a complexity term
that depends on the parameters of the LTR algorithm
(C,C ′,M,m, u, κ, βloc, δ). Only two terms depend
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Figure 1. MSE against the radius r of LTR for three data sets: (a) Boston Housing. (b) Ailerons. (c) Elevators. The small
horizontal bar indicates the location (mean ± one standard deviation) of the minimum of the empirically determined r.

upon the choice of the radius r: R̂(h) and βloc. Thus,
keeping all other parameters fixed, the theoretically
optimal radius r∗ is the one that minimizes the train-
ing error plus the slack term. The figures also include
plots of the training error combined with the complex-
ity term, appropriately scaled. The empirical mini-
mization of the radius r coincides with or is close to
r∗. The optimal r based on test MSE is indicated with
error bars.

6.2. Stable Versions of Unstable Algorithms

We refer to the stable version of the CM algorithm
presented in Sec. 5.1 as CM− STABLE. We compared
CM and CM− STABLE empirically on the same datasets,
again using m = u. For the normalized Laplacian we
used k-nearest neighbors graphs based on Euclidean
distance. The parameters k and C were chosen by
five-fold cross-validation over the training set. The
experiment was repeated 20 times with random par-
titions. The averaged mean-squared errors with stan-
dard deviations, are reported in Table 6.2.

Dataset CM CM− STABLE

Elevators 0.3228 ± 0.0264 0.3293 ± 0.0286

Ailerons 0.1149 ± 0.0081 0.1184 ± 0.0087

Housing 57.93 ± 6.5 57.92 ± 6.5

We conclude from this experiment that CM and
CM− STABLE have the same performance. However, as
we showed previously, CM− STABLE has a non-trivial
risk bound and thus comes with some guarantee.

7. Conclusion

We presented a comprehensive analysis of the stability
of transductive regression algorithms with novel gen-
eralization bounds for a number of algorithms. Since
they are algorithm-dependent, our bounds are often
tighter than those based on complexity measures such
as the VC-dimension. Our experiments also show the
effectiveness of our bounds for model selection and the
good performance of LTR algorithms.
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