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Abstract

Policy gradient approaches are a powerful in-
strument for learning how to interact with
the environment. Existing approaches have
focused on propositional and continuous do-
mains only. Without extensive feature engi-
neering, it is difficult – if not impossible –
to apply them within structured domains, in
which e.g. there is a varying number of ob-
jects and relations among them. In this pa-
per, we describe a non-parametric policy gra-
dient approach – called NPPG – that over-
comes this limitation. The key idea is to
apply Friedmann’s gradient boosting: poli-
cies are represented as a weighted sum of re-
gression models grown in an stage-wise opti-
mization. Employing off-the-shelf regression
learners, NPPG can deal with propositional,
continuous, and relational domains in a uni-
fied way. Our experimental results show that
it can even improve on established results.

1. Introduction

Acting optimally under uncertainty is a central prob-
lem of artificial intelligence. If an agents learns to act
solely on the basis of the rewards associated with ac-
tions taken, this is called reinforcement learning (Sut-
ton & Barto, 1998). More precisely, the agent’s learn-
ing task is to find a policy for action selection that
maximizes its reward over the long run.

The dominant reinforcement learning (RL) approach
for the last decade has been the value-function ap-
proach. An agent uses the reward it occasionally re-
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ceives to estimate a value-function indicating the ex-
pected value of being in a state or of taking an action
in a state. The policy is represented only implicitly,
for instance as the policy that selects in each state the
action with highest estimated value. As Sutton et al.
(2000) point out, the value function approach, how-
ever, has several limitations. First, it seeks to find de-
terministic policies, whereas in real world applications
the optimal policy is often stochastic, selecting differ-
ent actions with specific probabilities. Second, a small
change in the value-function parameter can push the
value of one action over that of another, causing a dis-
continuous change in the policy, the states visited, and
overall performance. Such discontinuous changes have
been identified as a key obstacle to establishing con-
vergence assurances for algorithms following the value-
function approach (Bertsekas & Tsitsiklis, 1996). Fi-
nally, value-functions can often be much more complex
to represent than the corresponding policy as they en-
code information about both the size and distance to
the appropriate rewards. Therefore, it is not surprising
that so called policy gradient methods have been de-
veloped that attempt to avoid learning a value function
explicitly (Williams, 1992; Baxter et al., 2001; Konda
& Tsitsiklis, 2003). Given a space of parameterized
policies, they compute the gradient of the expected
reward with respect to the policy’s parameters, move
the parameters into the direction of the gradient, and
repeat this until they reach a local optimum. This
direct approximation of the policy overcomes the lim-
itations of the value function approach stated above.
For instance, Sutton et al. (2000) show convergence
even when using function approximation.

Current policy gradient methods have focused on
propositional and continuous domains assuming the
environment of the learning agent to be representable
as a vector-space. Nowadays, the role of structure
and relations in the data, however, becomes more and
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more important (Getoor & Taskar, 2007): information
about one object can help the agent to reach conclu-
sions about other objects. Such domains are hard to
represent meaningfully using a fixed set of features.
Therefore, relational RL approaches have been devel-
oped (Džeroski et al., 2001), which seek to avoid ex-
plicit state and action enumeration as – in principle
– traditionally done in RL through a symbolic repre-
sentation of states and actions. Existing relational RL
approaches, however, have focused on value functions
and, hence, suffer from the same problems as their
propositional counterparts as listed above.

In this paper, we present the first model-free pol-
icy gradient approach that deals with relational and
propositional domains. Specifically, we present a
non-parametric approach to policy gradients, called
NPPG. Triggered by the observation that finding
many rough rules of thumb of how to change the way
to act can be a lot easier than finding a single, highly
accurate policy, we apply Friedmann’s (2001) gradient
boosting. That is, we represent policies as weighted
sums of regression models grown in a stage-wise op-
timization. Such a functional gradient approach has
recently been used to efficiently train conditional ran-
dom fields for labeling (relational) sequences using
boosting (Dietterich et al., 2004; Gutmann & Ker-
sting, 2006) and for policy search in continuous do-
mains (Bagnell & Schneider, 2003). In contrast to
the supervised learning setting of the sequence labeling
task, feedback on the performance is received only at
the end of an action sequence in the policy search set-
ting. The benefits of a boosting approach to functional
policy gradients are twofold. First, interactions among
states and actions are introduced only as needed, so
that the potentially infinite search space is not explic-
itly considered. Second, existing off-the-shelf regres-
sion learners can be used to deal with propositional
and relational domains in a unified way. To the best of
the authors’ knowledge, this is the first time that such
a unified treatment is established. As our experimen-
tal results show, NPPG can even significantly improve
upon established results in relational domains.

We proceed as follows. We will start off by reviewing
policy gradients and their mathematical background.
Afterwards, we will develop NPPG in Section 3. In
Section 4, we will present our experimental results.
Before concluding, we will touch upon related work.

2. Policy Gradients

Policy gradient algorithms find a locally optimal policy
starting from an arbitrary initial policy using a gra-
dient ascent search through an explicit policy space.

Consider the standard RL framework (Sutton & Barto,
1998), where an agent interacts with a Markov Deci-
sion Process (MDP). The MDP is defined by a number
of states s ∈ S, a number of actions a ∈ A, state-
transition probabilities δ(s, a, s′) : S × A × S → [0, 1]
that represent the probability that taking action a in
state s will result in a transition to state s′ and a re-
ward function r(s, a) : S × A 7→ IR. When the reward
function is nondeterministic, we will use the expected
rewards R(s, a) = Es,a [r(s, a)], where Es,a denotes the
expectation over all states s and actions a. The state,
action, and reward at time t are denoted as st ∈ S,
at ∈ A and rt(or Rt) ∈ IR.

The agent selects which action to execute in a state
following a policy function π(s, a) : S × A → [0, 1].
Current policy gradient approaches assume that the
policy function π is parameterized by a (weight) vector
θ ∈ IRn and that this policy function is differentiable
with respect to its parameters, i.e., that ∂π(s,a,θ)

∂θ ex-
ists. A common choice is a Gibbs distribution based
on a linear combination of features:

π(s, a) = eΨ(s,a)/
(∑

b
eΨ(s,b)

)
, (1)

where the potential function Ψ(s, a) = θT φsa with φsa

the feature vector describing state s and action a. This
representation guarantees that the policy specifies a
probability distribution independent of the exact form
of the function Ψ. Choosing a parameterization, cre-
ates an explicit policy space IRn with n equal to size
of the parameter vector θ. This space can be traversed
by an appropriate search algorithm.

Policy gradients are computed w.r.t. a func-
tion ρ that expresses the value of a policy in
an environment, ρ(π) =

∑
s∈S dπ(s)

∑
a∈A π(s, a) ·

Qπ(s, a) , where Qπ is the usual (possibly dis-
counted) state-action value function, e.g., Qπ(s, a) =
Eπ

[∑∞
i=0 γiRt+i|st = s, at = a

]
, and dπ(s) is the (pos-

sibly discounted) stationary distribution of states un-
der policy π. We assume a fully ergodic environment
so that dπ(s) exists and is independent of any starting
state s0 for all policies.

A property of ρ for both average reward reinforcement
learning and episodic tasks with a fixed starting state
s0 is that (Sutton et al., 2000, Theorem 1)

∂ρ

∂θ
=

∑
s
dπ(s)

∑
a

∂π(s, a)
∂θ

·Qπ(s, a) . (2)

Important to note is that this gradient does not in-
clude the term ∂dπ(s)

∂θ . Eq. (2) allows the computation
of an approximate policy gradient through exploration.
By sampling states s through exploration of the envi-
ronment following policy π, the distribution dπ(s) is
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automatically represented in the generated sample of
encountered states. The sum

∑
a

∂π(s,a)
∂θ Qπ(s, a) then

becomes an unbiased estimate of ∂ρ
∂θ and can be used

in a gradient ascent algorithm.

Of course, the value Qπ is unknown and must be esti-
mated for each visited state-action pair either by us-
ing a Monte Carlo approach or by building an explicit
representation of Q, although in this latter case care
must be taken when choosing the parameterization of
the Q-function (Sutton et al., 2000).

3. Non-Parametric Policy Gradients

A drawback of a fixed, finite parameterization of a
policy such as in Eq. (1) is that it assumes each feature
makes an independent contribution to the policy. Of
course it is possible to define more features to capture
combinations of the basic features, but this leads to
a combinatorial explosion in the number of features,
and hence, in the dimensionality of the optimization
problem. Moreover, in continuous and in relational
environments it is not clear at all which features to
choose as there are infinitely many possibilities.

To overcome these problems, we introduce a different
policy gradient approach based on Friedmann’s (2001)
gradient boosting. In our case, the potential function
Ψ in the Gibbs distribution1 of Eq. (1) is represented
as a weighted sum of regression models grown in an
stage-wise optimization. Each regression model can be
viewed as defining several new feature combinations.
The resulting policy is still a linear combination of fea-
tures, but the features can be quite complex. Formally,
gradient boosting is based on the idea of functional
gradient ascent, which we will now describe.

3.1. Functional Gradient Ascent

Traditional gradient ascent estimates the parameters
θ of a policy iteratively as follows. Starting with some
initial parameters θ0, the parameters θm in the next
iteration are set to the current parameters plus the
gradient of ρ w.r.t. to θ, i.e., θm = θ0 + δ1 + . . . + δm

where δm = ηm · ∂ρ/∂θm−1 is the gradient multiplied
by a constant ηm, which is obtained by doing a line
search along the gradient. Functional gradient ascent
is a more general approach, see e.g. (Friedman, 2001;
Dietterich et al., 2004). Instead of assuming a lin-
ear parameterization for Ψ, it just assumes that Ψ
will be represented by a linear combination of func-

1Other distributions are possible but are subject to fu-
ture research. For instance, it would be interesting to in-
vestigate modeling joint actions of multiple agents in rela-
tioanl domains a long the lines of Guestrin et al. (2002).

tions. Specifically, one starts with some initial func-
tion Ψ0, e.g. based on the zero potential, and itera-
tively adds corrections Ψm = Ψ0 + ∆1 + . . . + ∆m.
In contrast to the standard gradient approach, ∆m

here denotes the so-called functional gradient, i.e.,
∆m = ηm · Es,a [∂ρ/∂Ψm−1]. Interestingly, this func-
tional gradient coincides with what traditional policy
gradient approach estimate, namely (2), as the follow-
ing theorem says.

Theorem 3.1 (Functional Policy Gradient) For
any MDP, in either the average-reward or start-state
formulation,

Es,a

[
∂ρ

∂Ψ

]
=

∑
s,a

dπ(s) · ∂π(s, a)
∂Ψ

·Q(s, a) . (3)

This is a straightforward adaptation of Theorem 1 in
(Sutton et al., 2000) and is also quite intuitive: the
functional policy gradient indicates how we would like
the policy to change in all states and actions in order
to increase the performance measure ρ.

Unfortunately, we do not know the distribution dπ(s)
of how often we visit each state s under policy π. This
is, however, easy to approximate from the empirical
distribution of states visited when following π:

Es,a

[
∂ρ

∂Ψ

]
≈ Es∼π

∑
a

∂π(s, a)
∂Ψ

·Q(s, a)︸ ︷︷ ︸
=:fm(s,a)

 , (4)

where the state s is sampled according to π, denoted
as s ∼ π. We now have a set of traning examples
from the distribution dπ(s), so we can compute the
value fm(s, a) of the functional gradient at each of the
training data points for all2 actions a applicable in s.
We can then use these point-wise functional gradients
to define a set of training examples {(s, a), fm(s, a)}
and then train a function fm : S × A 7→ IR so that it
minimizes the squared error over the training exam-
ples. Although the fitted function fm is not exactly
the same as the desired functional gradient in Eq. (3),
it will point in the same general direction assuming
there are enough training examples. So, taking a step
∆m = ηm · fm will approximate the true functional
policy gradient ascent.

2Here, an update is made for all actions possible in each
state encountered irrespective of which action was actually
taken. Alternatively, we can only make an update for the
one action actually taken (Baxter et al., 2001). To com-
pensate for the fact that some actions are selected more fre-
quently than others, we divide by the probability of choos-
ing the action, i.e., we use fm(s, a)/π(s, a) as functional
gradient training examples and do not run over all actions.
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As an example, we will now derive the point-wise func-
tional gradient of a policy parameterized as a Gibbs
distribution (1). For the sake of readability, we denote
Ψ(s, a) as Ψa and Ψ(s, b) as Ψb.

Proposition 3.1 The point-wise functional gradient
of ρ with respect to a policy parameterized as a Gibbs
distribution (1) equals to Q(s, a) · ∂π(s,a)

∂Ψ with

∂π(s, a)
∂Ψ(s′, a′)

=


π(s, a)(1− π(s, a)) if s = s′ ∧ a = a′,

−π(s, a)π(s, a′) if s = s′ ∧ a 6= a′ .

0 otherwise,

To see this, consider the first case; the other cases
can be derived in a similar way. Due to the Gibbs
distribution, we can write (∂π(s, a))/(∂Ψ(s, a)) =

∂

∂Ψa

eΨa∑
b eΨb

=
eΨa ·

∑
b eΨb − eΨa ·

∑
b ∂eΨb/∂Ψa

[
∑

b eΨb ]2
.

Assuming (∂Ψb)/(∂Ψa) = 0, i.e., Ψa and Ψb are in-
dependent, it holds

∑
b ∂eΨb/∂Ψa = eΨa and we can

rewrite the state-action gradient as

= eΨa

(∑
b eΨb − eΨa ·

P
b eΨbP
b eΨb

)
[
∑

b eΨb ]2
= eΨa

(
1− eΨaP

b eΨb

)
∑

b eΨb

which simplifies – due to the definition of π(s, a) – to

∂π(s, a)
∂Ψ(s, a)

= π(s, a)(1− π(s, a)) .

The key point is the assumption (∂Ψb)/(∂Ψa) = 0.
This actually means that we model Ψ with k func-
tions fk, one for each action a, i.e., Ψ(s, a) = fa(s). In
turn, we estimate k regression models fa

m. In the ex-
periments, however, learning a single regression model
fm did not decrease performance so that we stick here
to the conceptually easier variant of learning a single
regression model fm.

We call policy gradient methods that follow the out-
lined functional gradient approach non-parametric pol-
icy gradients, or NPPG for short. They are non-
parametric because the number of parameters can
grow with the number of episodes.

3.2. Gradient Tree Boosting

NPPG as summarized in Alg. 1 describes actually a
family of approaches. In the following, we will develop
a particular instance, called TreeNPPG, which uses
regression tree learners to estimate fm in line 6.

In TreeNPPG, the policy is represented by sums of
regression trees. Each regression tree can be viewed

Algorithm 1: Non-Parametric Policy Gradient
Let Ψ0 be the zero potential (the empty tree)1

for m = 1 to N do2

Choose a starting state s3

Generate episodes Em starting in s following4

the policy πm−1 with
πm−1(s, a) = eΨm−1(s,a)/

(∑
b eΨm−1(s,b)

)
Generate functional gradient examples5

Rm = {(si, aij), fm(si, aij)} based on Em

Induce regression model fm based on Rm6

Set potential to Ψm = Ψm−1 + ∆m where7

∆m = ηm · fm with local step size ηm

return final potential Ψ = Ψ0 + ∆1 + . . . + ∆m8

as defining several new feature combinations, one cor-
responding to each path in the tree from the root to
a leaf. The resulting policies still have the form of
a linear combination of features, but the features can
be quite complex. The trees are grown using a regres-
sion tree learner such as CART (Breiman et al., 1984),
which in principle runs as follows. It starts with the
empty tree and repeatedly searches for the best test
for a node according to some splitting criterion such as
weighted variance. Next, the examples R in the node
are split into Rs (success) and Rf (failure) according
to the test. For each split, the procedure is recursively
applied, obtaining subtrees for the respective splits.
As splitting criterion, we use the weighted variance on
Rs and Rf . We stop splitting if the variance in one
node is small enough or a depth limit was reached. In
leaves, the average regression value is predicted.

We propose to use regression tree learners because a
rich variety of variants exists that can deal with finite,
continuous and even relational data. Depending on
the type of the problem domain at hand, one can in-
stantiate the TreeNPPG algorithm by choosing the
appropriate regression tree learner. We will give sev-
eral examples in the following experimental section.

4. Experimental Evaluation

Our intention is to investigate how well NPPG works.
To this aim, we implemented it and investigated the
following questions:

(Q1) Does TreeNPPG work and, if so, are there
cases where it yields better results than current state-
of-the-art methods? (Q2) Is TreeNPPG applicable
across finite, continuous, and relational domains?

In the following, we will describe the experiments car-
ried out to investigate the questions and their results.



Non-Parametric Policy Gradients: A Unified Treatment of Propositional and Relational Domains

(Q1) Blocks World: A Relational Domain

As a complex domain for empirical evaluation of
TreeNPPG , we consider the well-known blocks world
(Slaney & Thiébaux, 2001). To be able to compare
the performance of TreeNPPG to other relational
RL (RRL) systems, we adopt the same experimental
environment as used for RRL by e.g. Driessens and
Džeroski (2005). We learn in a world with 10 blocks
and try to accomplish the on(A,B) goal. This goal
is parameterized and appropriate values for A and B
are chosen at same the time as a starting state is gen-
erated. Thus, the reinforcement learn learns a single
policy that stacks any two blocks. Although this is a
relatively simple goal in a planning context, both RRL
and our TreeNPPG algorithm use a model free ap-
proach and only learn from interactions with the envi-
ronment. For the given setup this means that there are
approximately 55.7 million reachable states3 of which
1.44 million are goal states. The minimal number of
steps to the goal is 3.9 on average. The percentage
of states for other minimal solution sizes are given in
Fig. 2. The agent only receives a reward of 1 if it
reaches the goal in the minimal number of steps. The
probability of receiving a reward using a random strat-
egy is approximately 1.3%. To counter this difficulty
of reaching any reward, we adopted the active guid-
ance approach as proposed by Driessens and Dzeroski
(2004), presenting the RL agent with 10% of expert
traces during exploration in all experiments.

We apply TreeNPPG to this relational domain by
simply employing the relational regression tree learner
Tilde (Blockeel & De Raedt, 1998). Rather than
using attribute-value or threshold tests in node of the
tree, Tilde employs logical queries. Furthermore, a
placeholder for domain elements (such as blocks) can
occur in different nodes meaning that all occurrences
denote the same domain element. Indeed, this slightly
complicates the induction process, for example when
generating the possible tests to be placed in a node.
To this aim, it employs a classical refinement operator
under θ-subsumption. The operator basically adds a
literal, unifies variables, and grounds variables. When
a node is to be splitted, the set of all refinements
are computed and evaluated according to the chosen
heuristic. Except for the representational differences,
Tilde uses the same approach to tree-building as the
generic tree learner. Because single episodes are too
short and thus generate too few examples for Tilde

3We do not consider states in which the goal has already
been satisfied as starting states. Therefore, a number of
states where the goal is satisfied are not reachable, i.e.,
the states where on(A, B) is satisfied and there are extra
blocks on top of A.
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Figure 1. Comparison of the learning curves for Non-
Parametric Policy Gradient and various RRL implemen-
tations on the on(A,B) task in a world with 10 blocks.

to learn meaningful trees, we postpone calling Tilde
until an episode brings the cumulated number of ex-
amples over 100. As a language bias for Tilde we
employ the same language bias as used in published
RRL experiments, including predicates such as clear,
on, above and compheight4. Each learned model ∆m,
updates the potential function Ψ using a step-size
ηm = 1. We count on the self-correcting property of
tree boosting to correct over- or under-stepping the
target on the next iteration.

We ran experiments using three versions of the RRL
system, i.e, TG (Driessens et al., 2001), RIB (Driessens
& Ramon, 2003), and Trendi (Driessens & Džeroski,
2005), which represent the current state-of-the-art of
RRL systems, and our TreeNPPG algorithm. Af-
ter every 50 learning episodes, we fixed the strategy
learned by RRL and tested the performance on 1000
randomly generated starting states. For TreeNPPG
fixing the strategy is not required as it uses the learned
strategy for exploration directly. Fig. 1 shows the re-
sulting learning curves averaged over 10 test-runs as
well as the standard deviations of these curves. As
shown, TreeNPPG outperforms all tested versions of
the RRL system. After approximately 2000 learning
episodes, TreeNPPG solves 99% of all presented test-
cases in the minimal number of steps. With less than
4 steps per learning episode on average, this means
that TreeNPPG generalizes the knowledge it col-
lected by visiting less than 8000 states to solve 99%
of 54.3 million states. Around this time, TreeNPPG
has generated a list of 500 trees on average. One ob-
servation that can not be made directly on the shown
graph is the stability of the TreeNPPG algorithm.
Where the performance of the RRL system using TG

4For a full overview and the semantics of these predi-
cates, we refer to (Driessens & Džeroski, 2005).
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Figure 2. Detailed view of the learning performance of
TreeNPPG showing the percentage of solved test-cases
with respect to the minimal solution size for varying
amounts of learning experience. The graph also shows the
percentage of test-cases for each solution length.

for regression can vary substantially between experi-
ments, TreeNPPG follows an extremely similar path
in each iteration of the experiment. The only variation
between experiments is the exact time-frame of the
phase transition in the results, as shown by the peak in
TreeNPPG’s standard deviation curve. Fig. 2 shows
the results in more detail, plotting the percentage of
solved test-cases with respect to the minimal solution
length. As one can see, TreeNPPG gradually learns
to solve problems with growing solution sizes. The
graph also shows the percentage of test-cases for each
solution size.

To summarize, the results clearly show that question
Q1 can be answered affirmatively.

(Q2) Corridor World: A Continuous Domain

To qualitatively test whether TreeNPPG is also ap-
plicable in continuous domains, we considered a sim-
ple continuous corridor domain. The task is to navi-
gate a robot from any position pos0 ∈ [0, 10] in a one-
dimensional corridor [0, 10] to one of the exists at both
ends (0 and 10). At each time t = 0, 1, 2, . . ., the robot
can go either one step to the left (a = −1) or one step
to the right (a = 1); the outcome, however, is uncertain
with post+1 = post + a +N (1, 1). The robot is given a
reward after each step equal to −1 if pos ∈ (0, 10) and
equal to 20 otherwise, i.e., it reaches one of the exists.

Fig. 3 shows how the stochastic policy evolves with
the number of iterations, i.e., calls to the tree learner.
These results are averaged over 30 reruns. In each run,
we selected a random starting position pos0 uniformly
in (0, 10), gathered learning examples from 30 episodes
in each iteration, and used a step size ηm = 0.7. As

Figure 3. Learning performance of TreeNPPG on the
continuous corridor task. Shown is how the probability of
going left at all corridor positions evolves with the number
of iterations. The shading indicates the standard deviation
over the 30 runs of the experiment.

one can see, the robot gradually learns to go left in
the left section of the corridor and right in the right
section. Quite intuitively, the uncertainty is highest in
the middle part of the corridor.

We also ran experiments in a grid-world version of this
problem. We do not report on the successful results
here because finite domains are a special case of the re-
lational and continuous cases. To summarize, question
Q2 can also be answered affirmatively.

5. Related Work

Within reinforcement learning (RL), there are two
main classes of solution methods: value-function meth-
ods seek to estimate the value of states and actions
whereas policy-based methods search for a good pol-
icy within some class of policies.

Within policy-based methods, policy gradients have
received increased attention, see e.g. (Williams, 1992;
Baxter et al., 2001; Guestrin et al., 2002; Konda &
Tsitsiklis, 2003; Munos, 2006) as a non-exhausting list.
Most closely related to NPPG is the work of Bagnell
and Schneider (2003), see also (Bagnell, 2004). They
proposed a functional gradient policy algorithms in
reproducing kernel hilbert spaces for continuous do-
mains. So far, however, this line of work has not
considered (relationally) structured domains and the
connection to gradient boosting was not employed.

Within value function approaches, the situation is
slightly different. NPPG can be viewed as automat-
ically generating a “variable” propositionalization or
discretization of the domain at hand. In this sense,
it is akin to tree-based state discretization RL ap-
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proaches such as (Chapman & Kaelbling, 1991; Mc-
Callum, 1996; Uther & Veloso, 1998) and related ap-
proaches. Within this line of research, there have been
some boosting methods proposed. Ernst et al. (2005)
showed how to estimate Q functions with ensemble
methods based on regression trees. Riedmiller (2005)
keeps all regression examples and re-weights them ac-
cording to some heuristic. Both neither consider policy
gradients nor relational domains.

Recently, there have been some exciting new develop-
ments in combining the rich relational representations
of classical knowledge representation with RL. While
traditional RL requires (in principle) explicit state
and action enumeration, these symbolic approaches
seek to avoid explicit state and action enumeration
through a symbolic representation of states and ac-
tions. Most work in this context, however, has fo-
cused on value function approaches. Basically, a num-
ber of relational regression algorithms have been de-
veloped for use in this RL system that employ rela-
tional regression trees (Driessens et al., 2001), rela-
tional instance based regression (Driessens & Ramon,
2003), graph kernels and Gaussian processes (Gärtner
et al., 2003) and relational model-trees (Driessens &
Džeroski, 2005). Finally, there is an increasing num-
ber of dynamic programming approaches for solv-
ing relational MDPs (Kersting et al., 2004; Sanner
& Boutilier, 2005; Wang et al., 2007). In contrast
to NPPG, they assume a model of the domain. It
would be interesting, however, to combine NPPG with
these approaches along the line of (Wang & Dietterich,
2003). A parametric step into this direction has been
already taken by Aberdeen (2006).

6. Conclusions

We have introduced the framework of non-parametric
policy gradient (NPPG) methods. It seeks to leverage
the policy selection problem by approaching it from
a gradient boosting perspective. NPPG is fast and
straightforward to implement, combines the expressive
power of relational RL with the benefits of policy gra-
dient methods, and can deal with finite, continuous,
and relational domains in a unified way. Moreover, the
experimental results show a significant improvement
over established results; for the first time, a (model-
free) relational RL approach learns to solve on(A,B)
in a world with 10 blocks.

NPPG suggests several interesting directions for fu-
ture research such as using more advanced regression
models, developing actor-critic versions of NPPG es-
timating a value function in parallel to reduce the vari-
ance of the gradient estimates, and exploiting NPPG’s

ability to learn in hybrid domains with both discrete
and continuous variables within real-world domains
such as as robotics and network routing. Most interest-
ing, however, is to address the more general problem
of learning how to interact with (relationally) struc-
tured environments in the presence observation noise.
NPPG is naturally applicable in this case and, hence,
paves the way towards (model-free) solutions of what
can be called relational POMDPs. This is a topic
of high current interest since it combines the expres-
sive representations of classical AI with the decision-
theoretic emphasis of modern AI.
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Džeroski, S., De Raedt, L., & Driessens, K. (2001). Re-
lational reinforcement learning. Machine Learning,
43, 7–52.

Ernst, D., Geurts, P., & Wehenkel, L. (2005). Tree-
based batch mode reinforcement learning. Journal
of Machine Learning Research (JMLR), 6, 503–556.

Friedman, J. (2001). Greedy function approximation:
A gradient boosting machine. Annals of Statistics,
29, 1189–1232.
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