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Abstract
We consider the problem of optimizing multi-
label MRFs, which is in general NP-hard and
ubiquitous in low-level computer vision. One
approach for its solution is to formulate it
as an integer linear programming and relax
the integrality constraints. The approach we
consider in this paper is to first convert the
multi-label MRF into an equivalent binary-
label MRF and then to relax it. The result-
ing relaxation can be efficiently solved using
a maximum flow algorithm. Its solution pro-
vides us with a partially optimal labelling of
the binary variables. This partial labelling
is then easily transferred to the multi-label
problem. We study the theoretical properties
of the new relaxation and compare it with the
standard one. Specifically, we compare tight-
ness, and characterize a subclass of problems
where the two relaxations coincide. We pro-
pose several combined algorithms based on
the technique and demonstrate their perfor-
mance on challenging computer vision prob-
lems.

1. Introduction

One of the major advances in computer vision in the
past few years has been the development of efficient
deterministic algorithms for solving discrete labeling
problems. Labeling problems occur in many places
from dense stereo and image segmentation (Boykov
et al., 2001; Szeliski et al., 2006) to the use of picto-
rial structures for object recognition (Felzenszwalb &
Huttenlocher, 2000). They can be shown to be equiv-
alent to the problem of estimating the maximum a
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posterior (map) solution in graphical models such as
Markov Random Fields (mrf) and Conditional Ran-
dom Fields (crf), which is also often referred to as
energy minimization.
A number of powerful algorithms are present in the
literature which deal with the problem. For cer-
tain subclasses of the problem, it is possible to com-
pute the exact solution in polynomial time: MRFs of
bounded tree-width, e.g . (Lauritzen, 1998); with con-
vex pairwise potentials (Ishikawa, 2003); with submod-
ular potentials of binary (Hammer, 1965; Kolmogorov
& Zabih, 2004) or multi-label (Schlesinger & Flach,
2000; Kovtun, 2004) variables; with permuted sub-
modular potentials (Schlesinger, 2007). However, the
problem of minimizing a general energy function is NP-
hard. Nevertheless it is just these sorts of general en-
ergies that occur in many vision problems and making
progress towards their solution is of paramount impor-
tance.

Energy Minimization as a Linear Program
General discrete energy minimization can be seen as
an integer programming problem. Dropping inte-
grality constraints leads to an attractive linear pro-
gramming relaxation (LP-1). Unfortunately, linear
programs arising from this scheme in vision applica-
tions are of very large scale, and are not practical
to solve with general methods. A number of algo-
rithms have been developed (Schlesinger, 1976; Ko-
val & Schlesinger, 1976; Wainwright et al., 2003; Kol-
mogorov, 2006; Werner, 2007) which attempt to solve
this relaxation by exploiting the special structure of
the problem. However, their common drawback is that
they may converge to a suboptimal point. Other de-
veloped methods for energy minimization include local
search algorithms (Boykov et al., 2001), primal-dual
method (Komodakis & Tziritas, 2005), subgradient
methods (Schlesinger & Giginyak, 2007; Komodakis
et al., 2007). Some local search algorithms provide
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approximation ratio guarantee for (semi-)metric en-
ergies (Boykov et al., 2001; Komodakis & Tziritas,
2005). Finally, there are methods which output a
partial assignment of labels with guaranteed opti-
mality certificate for binary (Hammer et al., 1984;
Boros et al., 1991; Boros et al., 2006; Rother et al.,
2007) and multi-label (Kovtun, 2003; Kovtun, 2004)
problems. Dead-end elimination is another related
method for identifying non-optimal assignments based
on local sufficient conditions, it was originally pro-
posed (Desmet et al., 1992) for predicting and design-
ing the structures of proteins. In this paper we develop
a novel method for obtaining partial optimal solutions
of functions of multi-label variables.
Our method works by first transforming the multi-
label energy function to a function involving binary
variables (Schlesinger & Flach, 2006). This binary en-
ergy is then minimized by applying the roof dual relax-
ation (Boros & Hammer, 2002; Hammer et al., 1984),
which can be solved efficiently using a single graph
cut. More importantly, solving the roof dual relax-
ation results in an assignment of a subset of the vari-
ables which is guaranteed to be valid for any optimal
solution. This partially optimal solution can be used
to constrain the state space of the original multi-label
problem. As we show, this approach may be viewed
as a different LP-relaxation of the multi-label energy
minimization problem (LP-2).

Comparing LP-1 with LP-2 We present a num-
ber of theoretical results studying properties of LP-2
and relating LP-2 with LP-1. Our first result is that
LP-1 is a tighter relaxation of the energy minimization
problem compared to LP-2. We show in the paper that
solutions of LP-1 necessarily satisfy the constraints de-
rived by LP-2, so additional guarantees for methods
based on LP-1 may follow. We also identify a sub-
class of problems for which LP-2 is as tight as LP-1.
Thus, for problems of this subclass LP-1 can be solved
exactly and efficiently using combinatorial methods.
It was recently demonstrated that the roof dual re-
laxation performs well for a number of computer vi-
sion applications (Kolmogorov & Rother, 2007; Rother
et al., 2007) which are naturally formulated as a binary
energy minimization. However, it turns out that when
multi-label problems are formulated as binary energy
minimization the roof dual relaxation leaves many
variables unassigned. We therefore use recently pro-
posed enhancements of the roof dual technique called
“probing” (Boros et al., 2006; Rother et al., 2007)
which can often help resolve these ambiguities. Our
last contribution is providing an alternative formula-
tion of LP-2: we prove that it is equivalent to com-
puting a decomposition of the energy into submodular

and supermodular parts so that the sum of the lower
bounds for each part is maximized. Precise details of
this theoretical result are given in (Shekhovtsov et al.,
2008, section 10).
Although this is primarily a theoretical paper, we
have performed a number of experiments with vari-
ous energy models arising in vision applications, in-
cluding image restoration, object-based segmentation,
and image stitching. Our experiments show that the
proposed method outperforms the competing method
of (Kovtun, 2003) by labelling many more random
variables. We also demonstrate that it may help solv-
ing difficult problems by reducing their state space and
applying other methods to the reduced problem.

2. Energy Minimization

Let L = {1 . . .K} be a set of labels. Let G = (V, E) be
a graph, where the set of edges E ⊆ V × V is antisym-
metric and antireflexive, i.e. (s, t) ∈ E ⇒ (t, s) /∈ E .
We denote an ordered pair (s, t) ∈ E simply by st. Let
each graph node s ∈ V be assigned a label xs ∈ L
and let a labeling (or configuration) be defined as x =
{xs | s ∈ V}1. Let {θs(i) ∈ R | i ∈ L, s ∈ V} be uni-
variate potentials and {θst(i, j) ∈ R | i, j ∈ L, st ∈ E}
be pairwise potentials of a random field. Let in addi-
tion θconst be a constant term, and let a concatenated
vector of potentials, including the constant term, be
denoted as θ = (θ, θconst) ∈ Ω = RI∪{const}, where set
of indices

I = {(s, i) | s ∈ V, i ∈ L} ∪ {(st, ij) | st ∈ E , i, j ∈ L}
(1)

corresponds to all univariate and pairwise terms. No-
tation θI will thus refer to all components of θ but the
constant term. The energy of a configuration x of the
random field is defined as:

E(x|θ) =
∑
s∈V

θs(xs) +
∑
st∈E

θst(xs, xt) + θconst. (2)

2.1. LP-relaxation
We will study two different relaxations of minimization
of (2). Both relaxations can be written using the same
formulation but will differ in the graph, number of
labels and potential vector involved.
Energy function (2) can be conveniently written using
a scalar product in Ω as E(x|θ) = 〈µ(x), θ〉, where
µ(x) ∈ {0, 1}I∪{const} is defined by µ(x)s(i) = δ{xs=i},
µ(x)st(i, j) = δ{xs=i}δ{xt=j} and µ(x)const = 1. In this
notation minimization of E is expressed as:

min
x∈LV

〈µ(x), θ〉. (3)

1Notation {xs|s ∈ S} (bold brackets), where S is a
finite set, will stand for the concatenated vector of variables
xs, rather than the set of their values.
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The LP-relaxation of (3) reviewed in, e.g ., (Werner,
2007) is constructed as follows. For each variable xs,
a set of relaxed variables µs(i) ∈ [0, 1], i ∈ L is in-
troduced. These variables are required to satisfy the
normalization constraints∑

i∈L
µs(i) = 1, ∀s ∈ V. (4)

Further, for each pair (xs, xt), st ∈ E the relaxed vari-
ables µst(i, j) ∈ [0, 1], i, j ∈ L are introduced which
must satisfy the marginalization constraints:∑

j′∈L
µst(i, j′) = µs(i), ∀st ∈ E , ∀i ∈ L,∑

i′∈L
µst(i′, j) = µt(j), ∀st ∈ E , ∀j ∈ L.

(5)

The concatenated vector µ ∈ Ω satisfying these con-
straints will be called a relaxed labeling. Indeed, a
vector µ with all integral components uniquely repre-
sents a labeling x. When the integrality constraints
are dropped we get the following relaxation of (3):

min
µ∈ΛG,L

〈µ, θ〉, (6)

where ΛG,L =
{
µ ∈ Ω+ |AµI = 0, BµI = 1, µconst =

1
}

is called the local (Wainwright et al., 2003) poly-
tope of graph G. Here set Ω+ denotes vectors from Ω
with all nonnegative components, equalities AµI = 0
express marginalization constraints (5), and equalities
BµI = 1 express normalization constraints (4).

2.2. Binary Energy Minimization
Energy minimization problems with 2 labels (|L| =
2) are conveniently described in terms of binary (or
Boolean) variables, i.e. with set of labels being B =
{0, 1}. For clarity we will denote binary configurations
by z. Univariate and pairwise terms of (2) can be
written as:

θs(zs) = θs(1)zs + θs(0)(1− zs),
θst(zs, zt) = θst(1, 1)zszt + θst(0, 1)(1− zs)zt

+θst(1, 0)zs(1− zt) + θst(0, 0)(1− zs)(1− zt).
(7)

Expanding brackets in (7) it is clear that (2) can be
transformed to the form:

E(z|η) =
∑

s

ηszs +
∑
st

ηstzszt + ηconst, (8)

which is a quadratic function of binary variables.
Functions of the form BV 7→ R are called pseudo-
Boolean (Boros & Hammer, 2002) and minimization
(or maximization) of (8) is called quadratic Pseudo-
boolean optimization.
Calculating coefficients η from θ is equivalent to choos-
ing the reparametrization θ̂ ≡ θ with non-zero ele-
ments being only θ̂s(1), θ̂st(1, 1) and θ̂const.

It is easy to see that pseudo-Boolean optimization, en-
ergy minimization with 2 labels and the MIN-CUT
problem are all equivalent problems, and can be sim-
ply converted one into another. It is also known that
polynomially solvable MIN-CUT problems (those hav-
ing weights of all edges in the graph non-negative) cor-
respond to quadratic pseudo-Boolean problems with
all weights ηst being non-positive, which is equivalent
to the condition of submodularity of E(·|η).

2.3. LP-relaxation of Binary Problems
As shown in (Hammer et al., 1984), the LP relaxation
(6) for the case of binary variables has special prop-
erties, which in general do not hold in the multi-label
case. First, there exists a half-integral optimal relaxed
labeling µ∗, i.e. all components are 0, 1

2 or 1. Second,
if µ∗ is integral for some node s (i.e. µ∗s(α) = 0), then
there exists a global minimum z of the original func-
tion in which zs = α. In other words, by solving the
LP relaxation we can obtain constraints on the global
minima of the binary energy. These constraints can be
expressed as

zmin ≤ z ≤ zmax, (9)

where zmin, zmax ∈ BV and inequalities are component-
wise. For instance, 0 ≤ zs ≤ 1 implies no constraints
on zs, while 0 ≤ zs ≤ 0 implies that zs is constrained
to be 0.
If (9) holds for all optimal solutions z, then the pair
(zmin, zmax) is said to define strong persistency; if (9)
holds for some optimal solution z then (zmin, zmax) de-
fines weak persistency (Boros & Hammer, 2002). It is
important to note that the LP relaxation can be solved
very efficiently by computing minimum cut/maximum
flow in an appropriately constructed graph. The tech-
nique in (Boros et al., 1991) is perhaps the most ef-
ficient; we will refer to it as the Qudratic Pseudo-
Boolean Optimization (QPBO) method2. It yields a
pair (zmin, zmax) defining strong persistency.
Recently, two techniques were introduced which ex-
tend the QPBO method. The first one is Prob-
ing (Boros et al., 2006), or QPBO-P. It fixes a cer-
tain node s to a particular label α, runs QPBO thus
obtaining some information about global minimizers
of the energy. This information is incorporated into
the energy (e.g. if we learn that zs = zt for all opti-
mal solutions then we contract nodes s and t), and the
“probing” is performed for other nodes until conver-
gence. An efficient implementation of QPBO-P was
described in (Rother et al., 2007). The second method

2Following (Rother et al., 2007) we use the abbreviation
QPBO to denote the max-flow algorithm for computing the
roof-dual (Boros et al., 1991) rather then the optimization
problem itself.
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is Improve, or QPBO-I (Rother et al., 2007). It takes
an input labeling z and tries to improve its energy by
fixing a subset of nodes to labels specified by z and
running QPBO. These operations guarantee not to in-
crease the energy, and in practice do often decrease
it.

3. Solving Multi-label Problems

We now address the problem of minimizing energy
functions involving multi-label variables.

3.1. Converting Multi-label Problems Into
Binary Ones

As was discussed in Sec. 2.2, there are simple tran-
sitions between energy minimization with two labels,
MIN-CUT problem and the quadratic pseudo-Boolean
optimization. Thus, it is not essentially important to
which of those forms a multi-label problem will be
reduced. The construction (Ishikawa, 2003; Kovtun,
2004; Schlesinger & Flach, 2006) adopted to our nota-
tion of binary energies is as follows.
We start the transformation procedure by obtaining a
reparametrization θ̂ ≡ θ which satisfies the following:

θ̂st(1, j) = θ̂st(i, 1) = 0 st ∈ E , i, j ∈ L
θ̂s(1) = 0 s ∈ V.

(10)

This reparametrization is easy to construct. For ex-
ample, to achieve θ̂st(i, 1) = 0 one needs to subtract
the value γc(i) = θst(i, 1) from θst(i, j) and add it to
θs(i), which does not change the energy, and so on,
see (Shekhovtsov et al., 2008) for details. Note that in
the case of two labels, this reparametrization θ̂ imme-
diately provides coefficients for writing a binary energy
in the form (8).
Let the tuple (L, G, θ) define a multi-label energy min-
imization problem. Let L̃ to refer to the set of the last
K − 1 labels of L, i.e. L̃ = {2 . . .K}. The components
of the equivalent binary energy minimization problem
are given as follows (Fig 1):

• Graph N = (V,A), where V = V × L̃ and A =
AE ∪ AV . AE =

{
((s, i), (t, j)) | st ∈ E , i, j ∈ L̃

}
.

AV =
{
((s, i), (s, i− 1)) | s ∈ V, i = 3 . . .K

}
.

• Binary configuration z ∈ BV . For a configuration
x ∈ LV the corresponding binary configuration
z(x) is defined by

z(x)(s,i) = δ{i≤xs}, (s, i) ∈ V. (11)

• For a binary configuration z, the corresponding
multi-label configuration x (denoted as x(z)) is
found as:

xs = 1 +
∑
i∈L̃

z(s,i). (12)

s t

xs

xt

1

2

3

(s,2)

(s,3)

(s,4)

4

(t,2)

(t,3)

(t,4)

x z

∞

∞

∞

∞

 

Figure 1. Converting multi-label problems into binary
ones. Left: an interaction pair st ∈ E of the multi-label
energy function; a labeling x is shown by black circles; low-
est labels are dashed since all weights in θ̂ associated with
them are 0. Right: binary variables z(s,i), z(t,j) used for
encoding the multi-label problem; labeling z(x) is shown
by black. Note that if the link (xs = 2, xt = 3) is ac-
tive (left) then two links [(s, 2), (t, 2)] and [(s, 2), (t, 3)] are
active (right) .

• Binary energy function

E(z|η) = H(z)+
∑
u∈V

ηuzu+
∑

uv∈AE

ηuvzuzv+ηconst,

(13)
where weights η are set such that

E(z(x)|η) = E(x|θ̂) = E(x|θ), ∀x ∈ LV . (14)

In particular pairwise terms ηuv are assigned as

η(s,i),(t,j) = Dij θ̂st st ∈ E , i, j ∈ L̃, (15)

where Dijθst = θst(i, j)+θst(i−1, j−1)−θst(i, j−
1)−θst(i−1, j). Hard constraints H are as follows:

H(z) =
∑

uv∈AV

h(zu, zv), (16)

where h(z(s,i), z(s,i−1)) = 0 if z(s,i) ≤ z(s,i−1) and
∞ otherwise (see Fig. 1). Hard constraints ensure
that any z with finite energy is in the form (11).

It is already known that the above defined transforma-
tion can be used together with st-mincut algorithms to
efficiently and exactly solve lattice-submodular multi-
label problems. In this paper, we broaden its appli-
cability by showing how it can be used in conjunc-
tion with roof-duality to obtain partial optimal solu-
tions for general problems. An important aspect of
the transformation is that (11) depends on the order-
ing of L. This will lead to certain limitations in the
sequel. An interesting question raised by reviewers
is whether it is possible to use a different reduction
to binary variables which does not depend on the or-
der. This does not look straightforward. For exam-
ple, a rather natural reduction suggested by review-
ers is to use binary indicator variables z(s,i) = δ{xs=i}
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and enforce constraint
∑

i z(s,i) ≤ 1 via K(K − 1)/2
hard pairwise terms and constraints

∑
i z(s,i) ≥ 1 by

adding sufficiently large negative value to all unary
terms. Unfortunately, the LP relaxation of the result-
ing binary problem can be shown to be degenerate
(see (Shekhovtsov et al., 2008)).

3.2. Multi-label QPBO
Let (G, K, θ) define a multi-label energy minimization
problem, and (N, B, η) define the corresponding binary
energy minimization problem. The LP-relaxation of
the multi-label problem is defined as:

min
µ∈ΛG,L

〈µ, θ〉 (LP-1)

while that of the binary problem defined as:

min
ν∈ΛN,B

〈ν, η〉. (LP-2)

We attempt minimization of E(x|θ) by applying
QPBO and its extensions -P, -I (Boros et al., 2006;
Rother et al., 2007) to the binary energy E(·|η). We
call the new methods multi-label QPBO (-P,-I), or
short MQPBO (-P,-I). As the original QPBO methods
efficiently solves LP-2, it is important to see how LP-2
is related to the original problem minx E(x|θ) and to
its relaxation LP-1. The following results apply.

Statement 1. Let (zmin, zmax) define strong per-
sistency for E(·|η) such that E(zmin) < ∞ and
E(zmax) < ∞. Then any optimal configuration x ∈
argminLV E(·|θ) must satisfy

xmin ≤ x ≤ xmax, (17)

where xmin = x(zmin), xmax = x(zmax).

The proof (Shekhovtsov et al., 2008) is simply by using
the relation (12).
Thus for each variable s there is an interval of labels
[xmin

s , xmax
s ] outside of which no label may be selected

in an optimal solution. All labels outside the inter-
val may therefore be safely discarded. As is seen, the
ordering of L turns to be very important. While in
many practical application there is a natural ordering
defined, generally, constraints in the form of intervals
derived from arbitrary ordering may be very weak.
A pairwise term θst is called submodular (resp. super-
modular) if

Dijθst ≤ 0 (resp. ≥ 0 ), i, j = 2 . . .K. (18)

Theorem 1. If the term θst is either submodular or
supermodular for each edge st ∈ E, the relaxations
LP-1 and LP-2 coincide, and there exist a mapping
between their optimal solutions.

Proof sketch. We have already used the mapping (11)
to relate integral solutions of the two problems such
that the energy is preserved. It is quite straightforward
to extend it to an injective mapping Π of relaxed label-
ings µ to relaxed labelings ν, preserving the associated
primal costs of LP-1 and LP-2. However, inverting this
mapping is not always possible, so there might be a so-
lution ν of LP-2, for which there is no corresponding
solution µ of LP-1. Under conditions of the theorem
a correction to a solution ν can be applied such that
it remains optimal and has a preimage in the mapping
Π feasible to LP-1. See details in (Shekhovtsov et al.,
2008).

Corollary 1. It is known that LP-2 can be solved us-
ing a network flow algorithm (Hammer et al., 1984).
This implies that for a subclass of problems (defined by
conditions of the above theorem) there exist efficient
fully combinatorial algorithms to solve LP-1, which
is an improvement over, e.g ., message passing algo-
rithms such as TRW-S. But currently, we do not see
applications for the case where a part of interactions
is submodular and the other part is supermodular.

The next result shows that strong persistency con-
straints (17) can be also extended to relaxed labelings:

Theorem 2. Let xmin = x(zmin), xmax = x(zmax) be
the output of MQPBO, and let µ ∈ ΛG,L be an optimal
solution of LP-1. Then µs;i = 0 for labels i outside the
interval [xmin

s , xmax
s ] for all s ∈ V.

Proof sketch. Assume µ violates constraints of the the-
orem. Let then ν = Πµ. For the binary problem it fol-
lows from the roof duality that a “truncated” solution,
ν̄ may be constructed, which has non-zero weights
ν̄u(a) only for labels a ∈ B such that zmin

u ≤ a ≤ zmax
u ,

u ∈ V and such that the primal cost is decreased:
〈ν̄, η〉 < 〈ν, η〉. It can then be mapped back to a so-
lution µ̄ = Π−1ν̄ of LP-1 of a strictly lower cost than
µ. This contradicts to the optimality of µ. See details
in (Shekhovtsov et al., 2008).

The theorem shows that LP-1 never selects nodes
which are rejected by LP-2, this may be useful in the
analysis of the algorithms related to LP-1.

4. Enhanced Algorithms

In this section we discuss in more detail the “probing”
and “improve” versions of MQPBO and show how they
could be used in combination with other algorithms for
minimization of multi-label energy functions.
MQPBO-P. This enhancement applies the probing
technique (Boros et al., 2006; Rother et al., 2007) to
binarized energy functions. It computes stronger con-
straints of the form (17) on the set of optimal config-
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Figure 2. The number of labelled variables in the partially
optimal solutions obtained by using MQPBO-P and the
algorithm (Kovtun, 2003) (denoted by A-K). Results are
shown for energy functions involving variables taking 3, 5
and 7 labels.

urations. Our results show that these constraints al-
low us to isolate the optimal labels for many random
variables of the original energy function. In fact for
certain energy functions we obtained the global mini-
mum configuration. If latter is not the case then con-
straints (17) lead to a simplified minimization problem
with a smaller or restricted solution space, which can
be further approached by any other minimization al-
gorithms.
As was mentioned above, MQPBO, and hence the
probing extension, is not invariant to permutations
of labels. While we are using a fixed ordering in all
our experiments, the method could be potentially run
under different orderings thus extracting multiple con-
straints.
MQPBO-P + X. Similar to QPBO+X (Rother
et al., 2007), restriction of the energy function ob-
tained by MQPBO(-P) is then minimized using any
other minimization algorithm X. In our experiments
we used max-product BP (Pearl, 1988), TRW-S (Kol-
mogorov, 2006) and α-expansion algorithm (Boykov
et al., 2001).
MQPBO-I. By using QPBO-I (Rother et al., 2007)
on the binarized problem any complete labelling of the
multi-label MRF can be updated such that its energy
never increases. This procedure can be seen as a local
search algorithm.

5. Experimental Results

We now provide the results of using our method to
minimize energy functions encountered in computer
vision problems. To get a good understanding of the
performance of our method we also tested it on syn-

Figure 3. Effect of non-convexity: the number of unla-
belled variables in the MQPBO-P solution for different val-
ues of pairwise strength λ and truncation T .

thetic energy functions.
Synthetic Problems. The energy functions corre-
sponding to the synthetic problems contained 50×50
multi-label variables which interacted under a 4-
connected neighborhood. We used different numbers
of labels and strengths of pairwise potentials in our ex-
periments. Unary potentials θs(xs) are sampled uni-
formly in {0,1. . . 100}. The pairwise potentials had
the form of a linear truncated model θst(xs, xt) =
λ
T min(|xs − xt|, T ), where T is the truncation and λ
is the pairwise strength. Fig. 2 shows comparison of
MQPBO-P to (Kovtun, 2003), truncation T is fixed
to 1. It is seen that the proposed method labels more
variables for a range of parameters. To study the effect
of non-convexity, we varied truncation T and strength
λ of the pairwise terms (Fig. 3). The number of la-
bels in this case is fixed to 7. Our experiments show

Original Noisy Image MQPBO-P
(E=65382)

BP (E=65424) TRW-S
(E=65398)

Expansion
(E=65386)

Figure 4. Image Denoising: results obtained by different
energy minimization algorithms. The energy used for this
experiment has |LI | = 7, γ = 14 and T = 4. Results
are annotated with their respective energy costs. All algo-
rithms were run untill convergence. Observe that MQPBO-
P labels all variables and thus obtains the globally optimal
solution for this energy.
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Figure 5. Object Segmentation and Recognition us-
ing (Shotton et al., 2006). The first row contains an image
from the MSRC (Shotton et al., 2006) dataset and the
results of running BP and TRW-S on the full energy. Dif-
ferent levels of gray denote different object classes such as
“sky” and “road”. The partially optimal solution obtained
by running MQPBO-P and A-K (Kovtun, 2003) is shown
in the bottom row, left image. Unlabeled pixels are shown
in green. This solution is used to obtain a restricted en-
ergy. Running BP (bottom, middle) and TRW-S (bottom,
right) on the restricted energy gives solutions with lower
energy. Hence running A-K + MQPBO-P + “X” is better
than running “X” alone. In all cases BP and TRW-S were
run for 50 iterations.

that MQPBO-P finds the globally optimal solution of
energy functions where the pairwise term is small in
magnitude or is nearly convex. As expected, the num-
ber of variables labelled by the algorithm decrease with
increase in the strength and non-convexity of the pair-
wise terms (Fig. 3).
Image Denoising. We now test the MQPBO-P algo-
rithm on the problem of image denoising and restora-
tion. There is a random variable for each pixel in the
image. The label set for the problem is the set of
intensities LI the pixels can take. The unary cost
for taking a particular label (intensity) is defined as
θs(xs) = |Is − φ(xs)| where Is is the intensity of the
pixel s in the image, and the function φ maps the la-
bels to their corresponding intensity levels. The pair-
wise terms of the energy are defined as: θst(xs, xt) =
γ min(|xs−xt|, T ) where γ is a model parameter and T
is the truncation used. Our experiments showed that
the MQPBO-P algorithm performed quite well on the
energy function and in some cases obtained the glob-
ally optimal solution which was not achieved by other
energy minimization algorithms (see Fig. 4).
Object based Segmentation. We now show the
results of using the MQPBO-P method for restricting
the energy functions. Our results show that the restric-
tion significantly reduces the number of variables and
makes them amenable for minimization using other
algorithms. We test the algorithm on the problem of

Figure 6. In this application we are stitching together four
images (already rectified) to a panoramic image. Running
alpha expansion gives result (a) and a zoom-in (dashed
rectangle) is shown in (b). The red arrow indicates a visible
cut. Image (c) shows the number of possible labels for
this image area, where white means all four images overlap
and very dark means only one image is possible for those
pixels. When applying MQPBO and MQPBO-P to this
image portion we obtain labelling (d) and (e) respectively,
where green means unlabeled and the different gray scales
represent different labels. We see that MQPBO-P is able
to label more pixels than MQPBO. It is also worth noting
that the visible cut in (b) is indeed the global minimum
which can be seen from labelling (e).

object segmentation and recognition. We use the en-
ergy function formulated in (Shotton et al., 2006). The
binarized energy function corresponding to this prob-
lem has around 107 variables and running MQPBO-P
on it directly is quite time consuming. To reduce the
size of the problem we first run the partial optimality
algorithm described in (Kovtun, 2003), referred to as
A-K. MQPBO-P is run on the restriction obtained us-
ing A-K. This combined procedure leaves 694 variables
unlabelled. The results are shown in Fig. 5.
Image Stitching. Finally, we investigated an appli-
cation where MQPBO-P shows its limitations. For
panoramic stitching the unary terms are either zero or
infinity, depending on the presence or absence of an
image, and consequently the pairwise terms dominate
the energy. We use the panoramic stitching formula-
tion from (Agarwala et al., 2004) where pairwise terms
model the visibility of a transition, different for each
pair of images. The results are discussed in fig 6.

6. Conclusions

This paper addressed the problem of minimizing non-
submodular multi-label energy functions. These are
used extensively in computer vision and are generally
NP-hard to minimize. We present a method for ob-
taining partially optimal solutions of such energies de-
rived from roof-dual based methods for binary energy
functions. We give new theoretical insights in the un-
derlying LP relaxation, being efficiently solved by the
method. Although this work is mainly theoretical in
nature we hope to inspire people to use these ideas
to develop better optimization algorithms. We also
believe that this approach is useful for other impor-
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tant problems in computer vision such as MRF/CRF
learning.
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