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Abstract

Algorithms for learning to rank Web docu-
ments usually assume a document’s relevance
is independent of other documents. This
leads to learned ranking functions that pro-
duce rankings with redundant results. In
contrast, user studies have shown that di-
versity at high ranks is often preferred. We
present two online learning algorithms that
directly learn a diverse ranking of documents
based on users’ clicking behavior. We show
that these algorithms minimize abandon-
ment, or alternatively, maximize the proba-
bility that a relevant document is found in
the top k positions of a ranking. Moreover,
one of our algorithms asymptotically achieves
optimal worst-case performance even if users’
interests change.

1. Introduction

Web search has become an essential component of the
Internet infrastructure, and has hence attracted sig-
nificant interest from the machine learning community
(e.g. Herbrich et al., 2000; Burges et al., 2005; Radlin-
ski & Joachims, 2005; Chu & Ghahramani, 2005; Met-
zler & Croft, 2005; Yue et al., 2007; Taylor et al.,
2008). The conventional approach to this learning-
to-rank problem has been to assume the availability
of manually labeled training data. Usually, this data
consists of a set of documents judged as relevant or not
to specific queries, or of pairwise judgments compar-
ing the relative relevance of pairs of documents. These
judgments are used to optimize a ranking function off-
line, to a standard information retrieval metric, then
deploying the learned function in a live search engine.

We propose a new learning to rank problem formu-
lation that differs in three fundamental ways. First,
unlike most previous methods, we learn from usage
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data rather than manually labeled relevance judg-
ments. Usage data is available in much larger quan-
tities and at much lower cost. Moreover, unlike man-
ual judgments, which need to be constantly updated
to stay relevant, usage data naturally reflects current
users’ needs and the documents currently available.
Although some researchers have transformed usage
data into relevance judgments, or used it to generate
features (e.g. Joachims, 2002; Radlinski & Joachims,
2005; Agichtein et al., 2006), we go one step further
by directly optimizing a usage-based metric.

Second, we propose an online learning approach for
learning from usage data. As training data is being
collected, it immediately impacts the rankings shown.
This means the learning problem we address is regret
minimization, where the goal is to minimize the total
number of poor rankings displayed over all time. In
particular, in this setting there is a natural tradeoff be-
tween exploration and exploitation: It may be valuable
in the long run to present some rankings with unknown
documents, to allow training data about these docu-
ments to be collected. In contrast, in the short run
exploitation is typically optimal. With only few ex-
ceptions (e.g. Radlinski & Joachims, 2007), previous
work does not consider such an online approach.

Third and most importantly, except for (Chen &
Karger, 2006), previous algorithms for learning to rank
have considered the relevance of each document in-
dependently of other documents. This is reflected in
the performance measures typically optimized, such
as Precision, Recall, Mean Average Precision (MAP)
(Baeza-Yates & Ribeiro-Neto, 1999) and Normalized
Discounted Cumulative Gain (NDCG) (Burges et al.,
2006). In fact, recent work has shown that these mea-
sures do not necessarily correlate with user satisfaction
(Turpin & Scholer, 2006). Additionally, it intuitively
stands to reason that presenting many slight varia-
tions of the same relevant document in web search re-
sults may increase the MAP or NDCG score, yet would
be suboptimal for users. Moreover, web queries often
have different meanings for different users (a canonical
example is the query jaguar) suggesting that a ranking
with diverse documents may be preferable.
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We will show how clickthrough data can be used to
learn rankings maximizing the probability that any
new user will find at least one relevant document high
in the ranking.

2. Related Work

The standard approach for learning to rank uses train-
ing data, in the form of judgments assessing the rele-
vance of individual documents to a query, to learn pa-
rameters θ for a scoring function f(q, di, θ). Given a
new query q, this function computes f(q, di, θ) for each
document di independently and ranks documents by
decreasing score (e.g. Herbrich et al., 2000; Joachims,
2002; Burges et al., 2005; Chu & Ghahramani, 2005).
This also applies to recent algorithms that learn θ
to maximize nonlinear performance measures such as
MAP (Metzler & Croft, 2005; Yue et al., 2007) and
NDCG (Burges et al., 2006; Taylor et al., 2008).

The theoretical model that justifies ranking docu-
ments in this way is the probabilistic ranking principle
(Robertson, 1977). It suggests that documents should
be ranked by their probablility of relevance to the
query. However, the optimality of such a ranking relies
on the assumption that there are no statistical depen-
dencies between the probabilities of relevance among
documents – an assumption that is clearly violated in
practice. For example, if one document about jaguar
cars is not relevant to a user who issues the query
jaguar, other car pages become less likely to be rele-
vant. Furthermore, empirical studies have shown that
given a fixed query, the same document can have dif-
ferent relevance to different users (Teevan et al., 2007).
This undermines the assumption that each document
has a single relevance score that can be provided as
training data to the learning algorithm. Finally, as
users are usually satisfied with finding a small number
of, or even just one, relevant document, the usefulness
and relevance of a document does depend on other
documents ranked higher.

As a result, most search engines today attempt to elim-
inate redundant results and produce diverse rankings
that include documents that are potentially relevant to
the query for different reasons. However, learning op-
timally diverse rankings using expert judgments would
require document relevance to be measured for differ-
ent possible meanings of a query. While the TREC
interactive track1 provides some documents labeled in
this way for a small number of queries, such document
collections are even more difficult to create than stan-
dard expert labeled collections.

1http://trec.nist.gov/data/t11 interactive/t11i.html

Several non-learning algorithms for obtaining a diverse
ranking of documents from a non-diverse ranking have
been proposed. One common one is Maximal Marginal
Relevance (MMR) (Carbonell & Goldstein, 1998).
Given a similarity (relevance) measure between docu-
ments and queries sim1(d, q) and a similarity measure
between pairs of documents sim2(di, dj), MMR iter-
atively selects documents by repeatedly finding di =
argmaxd∈D λsim1(d, q) − (1 − λ) maxdj∈S sim2(d, dj)
where S is the set of documents already selected and
λ is a tuning parameter. In this way MMR selects the
most relevant documents that are also different from
any documents already selected.

Critically, MMR requires that the relevance function
sim1(d, q), and the similarity function sim2(di, dj) is
known. It is usual to obtain sim1 and sim2 using al-
gorithms such as those discussed above. The goal of
MMR is to rerank an already learned ranking (that of
ranking documents by decreasing sim1 score) to im-
prove diversity. All previous approaches of which we
are aware that optimize diversity similarly require a
relevance function to be learned prior to performing
a diversification step (Zhu et al., 2007; Zhang et al.,
2005; Zhai et al., 2003), with the exception of Chen
and Karger (2006). Rather, they require that a model
for estimating the probability a document is relevant,
given a query and other non-relevant documents, is
available. In contrast, we directly learn a diverse rank-
ing of documents using users’ clicking behavior.

3. Problem Formalization

We address the problem of learning an optimally diver-
sified ranking of documents D = {d1, . . . , dn} for one
fixed query. Suppose we have a population of users,
where each user ui considers some subset of documents
Ai ⊂ D as relevant to the query, and the remainder of
the documents as non-relevant. Intuitively, users with
different interpretations for the query would have dif-
ferent relevant sets, while users with similar interpre-
tations would have similar relevant sets.

At time t, we interact with user ut with relevant
set At. We present an ordered set of k documents,
Bt = (b1(t), . . . , bk(t)). The user considers the results
in order, and clicks on up to one document. The prob-
ability of user ut clicking on document di (conditional
on the user not clicking on a document presented ear-
lier in the ranking) is assumed to be pti ∈ [0, 1]. We
refer to the vector of probabilities (pti)i∈D as the type
of user ut. In the simplest case, we could take pti = 1
if di ∈ At and 0 otherwise, in which case the user
clicks on the first relevant document or does not click
if no documents in Bt are relevant. However, in reality
clicks tend to be noisy although more relevant docu-
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Algorithm 1 Ranked Explore and Commit
1: input: Documents (d1, .., dn), parameters ε, δ, k.
2: x← d2k2/ε2 log(2k/δ)e
3: (b1, . . . , bk)← k arbitrary documents.
4: for i=1 . . . k do At every rank

5: ∀j. pj ← 0
6: for counter=1 . . . x do Loop x times

7: for j=1 . . . n do over every document dj

8: bi ← dj
9: display {b1, . . . , bk} to user; record clicks

10: if user clicked on bi then pj ← pj + 1
11: end for
12: end for
13: j∗ ← argmaxj pj Commit to best document at this rank

14: bi ← dj∗
15: end for

ments are more likely to be clicked on. In our analysis,
we will take pti ∈ [0, 1].

We get payoff 1 if the user clicks, 0 if not. The goal is
to maximize the total payoff, summing over all time.
This payoff represents the number of users who clicked
on any result, which can be interpreted as the user
finding at least one potentially relevant document (so
long as pti is higher when di∈At than when di /∈At).

The event that a user does not click is called aban-
donment since the user abandoned the search results.
Abandonment is an important measure of user satis-
faction because it indicates that users were presented
with search results of no potential interest.

4. Learning Algorithms

We now present two algorithms that directly mini-
mize the abandonment rate. At a high level, both
algorithms learn a marginal utility for each document
at each rank, displaying documents to maximize the
probability that a new user of the search system would
find at least one relevant document within the top k
positions. The algorithms differ in their assumptions.

4.1. Ranked Explore and Commit

The first algorithm we present is a simple greedy strat-
egy that assumes that user interests and documents
do not change over time. As we will see, after T
time steps this algorithm achieves a payoff of at least
(1−1/e−ε)OPT −O(k3n/ε2 ln(k/δ)) with probability
at least 1− δ. OPT denotes the maximal payoff that
could be obtained if the click probabilities pti were
known ahead of time for all users and documents, and
(1− 1/e)OPT is the best obtainable polynomial time
approximation, as will be explained in Section 5.1.

As described in Algorithm 1, Ranked Explore and

Algorithm 2 Ranked Bandits Algorithm
1: initialize MAB1(n), . . . ,MABk(n) Initialize MABs

2: for t = 1 . . . T do
3: for i = 1 . . . k do Sequentially select documents

4: b̂i(t)← select-arm (MABi)
5: if b̂i(t)∈{b1(t), .., bi−1(t)} then Replace repeats

6: bi(t)← arbitrary unselected document
7: else
8: bi(t)← b̂i(t)
9: end if

10: end for
11: display {b1(t), . . . , bk(t)} to user; record clicks
12: for i = 1 . . . k do Determine feedback for MABi

13: if user clicked bi(t) and b̂i(t) = bi(t) then
14: fit = 1
15: else
16: fit = 0
17: end if
18: update (MABi, arm = b̂i(t), reward = fit)
19: end for
20: end for

Commit (REC) iteratively selects documents for each
rank. At each rank position i, every document dj is
presented a fixed number x times, and the number of
clicks it receives during these presentations is recorded.
After nx presentations, the algorithm permanently as-
signs the document that received the most clicks to
the current rank, and moves on to the next rank.

4.2. Ranked Bandits Algorithm

Ranked Explore and Commit is purely greedy, mean-
ing that after each document is selected, this deci-
sion is never revisited. In particular, this means that
if user interests or documents change, REC can per-
form arbitrarily poorly. In contrast, the Ranked Ban-
dits Algorithm (RBA) achieves a combined payoff of
(1−1/e)OPT−O(k

√
Tn log n) after T time steps even

if documents and user interests change over time.

This algorithm leverages standard theoretical results
for multi-armed bandits. Multi-armed bandits (MAB)
are modeled on casino slot machines (sometimes called
one-armed bandits). The goal of standard MAB algo-
rithms is to select the optimal sequence of slot ma-
chines to play to maximize the expected total reward
collected. For further details, refer to (Auer et al.,
2002a). The ranked bandits algorithm runs an MAB
instance MABi for each rank i. Each of the k copies of
the multi-armed bandit algorithm maintains a value
(or index) for every document. When selecting the
ranking to display to users, the algorithm MAB1 is
responsible for choosing which document is shown at
rank 1. Next, the algorithm MAB2 determines which
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document is shown at rank 2, unless the same docu-
ment was selected at the highest rank. In that case,
the second document is picked arbitrarily. This pro-
cess is repeated to select all top k documents.

Next, after a user considers up to the top k documents
in order and clicks on one or none, we need to update
the indices. If the user clicks on a document actually
selected by an MAB instance, the reward for the arm
corresponding to that document for the multi-armed
bandit at that rank is 1. The reward for the arms
corresponding to all other selected documents is 0. In
particular, note that the RBA treats the bandits corre-
sponding to each rank independently. Precise pseudo-
code for the algorithm is presented in Algorithm 2.
A generalization of this algorithm, in an abstract set-
ting without the application to Information Retrieval,
was discovered independently by Streeter and Golovin
(2007).

The actual MAB algorithm used for each MABi in-
stance is not critical, and in fact any algorithm for the
non-stochastic multi-armed bandit problem will suf-
fice. Our theoretical analysis only requires that:

• The algorithm has a set S of n strategies.
• In each period t a payoff function ft : S → [0, 1] is

defined. This function is not revealed to the algo-
rithm, and may depend on the algorithm’s choices
before time t.

• In each period the algorithm chooses a (random)
element yt ∈ S based on the feedback revealed in
prior periods.

• The feedback revealed in period t is ft(yt).
• The expected payoffs of the chosen strategies sat-

isfy:
T∑
t=1

E[ft(yt)] ≥ max
y∈S

T∑
t=1

E[ft(y)] − R(T )

where R(T ) is an explicit function in o(T ) which
depends on the particular multi-armed bandit al-
gorithm chosen, and the expectation is over any
randomness in the algorithm. We will use the
Exp3 algorithm in our analysis, where R(T ) =
O
(√
Tn log n

)
(Auer et al., 2002b).

We will also later see that although these conditions
are needed to bound worst-case performance, better
practical performance may be obtained at the expense
of worst-case performance if they are relaxed.

5. Theoretical Analysis

We now present a theoretical analysis of the algorithms
presented in Section 4. First however, we discuss the
offline version of this optimization problem.

5.1. The Offline Optimization Problem

The problem of choosing the optimum set of k docu-
ments for a given user population is NP-hard, even if
all the information about the user population (i.e. the
set of relevant documents for each user) is given offline
and we restrict ourselves to pij ∈ {0, 1}. This is be-
cause selecting the optimal set of documents is equiva-
lent to the maximum coverage problem: Given a posi-
tive integer k and a collection of subsets S1, S2, . . . , Sn
of an m-element set, find k of the subsets whose union
has the largest possible cardinality.

The standard greedy algorithm for the maximum cov-
erage problem, translated to our setting, iteratively
chooses the document that is relevant to the most users
for whom a relevant document has not yet been se-
lected. This algorithm is a (1− 1/e)-approximation
algorithm for this maximization problem (Nemhauser
et al., 1978). The (1 − 1/e) factor is optimal and
no better worst-case approximation ratio is achievable
in polynomial time unless NP ⊆ DTIME

(
nlog logn

)
(Khuller et al., 1997).

5.2. Analysis of Ranked Bandits Algorithm

We start by analyzing the Ranked Bandits Algorithm.
This algorithm works by simulating the offline greedy
algorithm, using a separate instance of the multi-
armed bandit algorithm for each step of the greedy
algorithm. Except for the sublinear regret term, the
combined payoff is as high as possible without violat-
ing the hardness-of-approximation result stated in the
preceding paragraph.

To analyze the RBA, we first restrict ourselves to users
who click on any given document with probability ei-
ther 0 or 1. We refer to this restricted type of user as a
deterministic user ; we will relax the requirement later.
Additionally, this analysis applies to a worst case (and
hence fixed) sequence of users.

Further, it is useful to introduce some notation. For a
set A and a sequence B = (b1, b2, . . . , bk), let

Gi(A,B) =
{

1 if A intersects {b1, . . . , bi}
0 otherwise

gi(A,B) = Gi(A,B)−Gi−1(A,B)

Recalling that At is the set of documents relevant to
user ut, we see that Gk(At, B) is the payoff of present-
ing B to the user ut. Let

B∗ = argmax
B

T∑
t=1

Gk(At, B),

OPT =
T∑
t=1

Gk(At, B∗).
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Recall that (b̂1(t), . . . , b̂k(t)) is the sequence of docu-
ments chosen by the algorithms MAB1, . . . ,MABk at
time t, and that (b1(t), . . . , bk(t)) is the sequence of
documents presented to the user. Define the feedback
function fit for algorithm MABi at time t, as follows:

fit(b) =
{

1 if Gi−1(At, Bt) = 0 and b ∈ At
0 otherwise .

Note that the value of fit defined in the pseudocode for
the Ranked Bandits Algorithms is equal to fit(b̂i(t)).

Lemma 1. For all i,

E

[
T∑
t=1

gi(At, Bt)

]

≥ 1
k

E

[
T∑
t=1

(Gk(At, B∗)−Gi−1(At, Bt))

]
−R(T )

=
1
k
OPT − 1

k
E

[
T∑
t=1

Gi−1(At, Bt)

]
−R(T ).

Proof. First, note that
gi(At, Bt) ≥ fit(b̂i(t)). (1)

This is trivially true when fit(b̂i(t)) = 0. When
fit(b̂i(t)) = 1, Gi−1(At, Bt) = 0 and b̂i(t) ∈ At. This
implies that bi(t) = b̂i(t) and that gi(At, Bt) = 1.

Now using the regret bound for MABi we obtain
T∑
t=1

E[fit(b̂i(t))] ≥ max
b

T∑
t=1

E[fit(b)]−R(T )

≥ 1
k

E

[∑
b∈B∗

T∑
t=1

fit(b)

]
−R(T ). (2)

To complete the proof of the lemma, we will prove that∑
b∈B∗

fit(b) ≥ Gk(At, B∗)−Gi−1(At, Bt). (3)

The lemma follows immediately by combining (1)-(3).
Observe that the left side of (3) is a non-negative
integer, while the right side takes one of the values
{−1, 0, 1}. Thus, to prove (3) it suffices to show that
the left side is greater than or equal to 1 whenever the
right side is equal to 1. The right side equals 1 only
when Gi−1(At, Bt) = 0 and At intersects B∗. In this
case it is clear that there exists at least one b ∈ B∗

such that fit(b) = 1, hence the left side is greater than
or equal to 1.

Theorem 1. The algorithm’s combined payoff after T
rounds satisfies:

E

[
T∑
t=1

Gk(At, Bt)

]
≥
(

1− 1
e

)
OPT − kR(T ). (4)

Proof. We will prove, by induction on i, that

OPT−E

[
T∑
t=1

Gi(At, Bt)

]
≤
(

1− 1
k

)i
OPT+iR(T ).

(5)
The theorem follows by taking i = k and using the
inequality

(
1− 1

k

)k
< 1

e .

In the base case i = 0, inequality (5) is trivial. For the
induction step, let

Zi = OPT −E

[
T∑
t=1

Gi(At, Bt)

]
.

We have

Zi = Zi−1 −E

[
T∑
t=1

gi(At, Bt)

]
, (6)

and Lemma 1 says that

E

[
T∑
t=1

gi(At, Bt)

]
≥ 1

k
Zi−1 −R(T ). (7)

Combining (6) with (7), we obtain

Zi ≤
(

1− 1
k

)
Zi−1 +R(T ).

Combining this with the induction hypothesis proves
(5).

The general case, in which user ui’s type vector
(pij)j∈D is an arbitrary element of [0, 1]D, can be re-
duced via a simple transformation to the case of de-
terministic users analyzed above. We replace user ui
with a random deterministic user ûi whose type vector
p̂i ∈ {0, 1}D is sampled using the following rule: the
random variable p̂ij has distribution

p̂ij =
{

1 with probability pij
0 with probability 1− pij ,

and these random variables are mutually independent.
Note that the clicking behavior of user ui when pre-
sented with a ranking B is identical to the clicking
behavior observed when a random user type ûi is sam-
pled from the above distribution, and the ranking B
is presented to this random user. Thus, if we apply
the specified transformation to users u1, u2, . . . , uT ,
obtaining a random sequence û1, û2, . . . , ûT of deter-
ministic users, this transformation changes neither the
algorithm’s expected payoff nor that of the optimum
ranking B∗. Thus, Theorem 1 for general users can
be deduced by applying the same theorem to the ran-
dom sequence û1, . . . , ûT and taking the expectation of
the left and right sides of (4) over the random choices
involved in sampling û1, . . . , ûT .
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Note also that B∗ is defined as the optimal subset of
k documents, and OPT is the payoff of presenting B∗,
without specifying the order in which documents are
presented. However, the Ranked Bandits Algorithm
learns an order for the documents in addition to iden-
tifying a set of documents. In particular, given k′ < k,
RBA(k′) would receive exactly the same feedback as
the first k′ instances of MABi receive when running
RBA(k). Hence any k′ sized prefix of the learned rank-
ing also has the same performance bound with respect
the appropriate smaller set B′∗.

Finally, it is worth noting that this analysis cannot
be trivially extended to non-binary payoffs, for exam-
ple when learning a ranking of web advertisements.
In particular, the greedy algorithm on which RBA is
based in the non-binary payoff case can obtain a payoff
that is a factor of k − ε below optimal, for any ε > 0.

5.3. Analysis of Ranked Explore and Commit

The analysis of the Ranked Explore and Commit
(REC) algorithm is analogous to that of the Ranked
Bandits algorithm, except that the equivalents of
Lemma 1 and Theorem 1 are only true with high prob-
ability after t0 = nxk time steps of exploration have
occurred. Let B denote the ranking selected by REC.
Lemma 2. Let x = 2k2/ε2 log(2k/δ). Assume At is
drawn i.i.d. from a fixed distribution of user types. For
any i, with probability 1− δ/k,

E

[
T∑
t=t0

gi(At, B)

]

≥ 1
k

E

[
T∑
t=t0

(Gk(At, B∗)−Gi−1(At, B))

]
− ε

k
T.

Proof Outline. First note that in this setting, B∗ and
OPT are defined in expectation over the At drawn.
For any document, by Hoeffding’s inequality, with
probability 1− δ/2k the true payoff of that document
explored at rank i is within ε/2k of the observed mean
payoff. Hence the document selected at rank i is within
ε/k of the payoff of the best document available at
rank i. Now, the same proof as for Lemma 1 applies,
although with a different regret R(T ).

Theorem 2. With probability (1− δ), the algorithm’s
combined payoff after T rounds satisfies:

E

[
T∑
t=1

Gk(At, B)

]
≥
(

1− 1
e

)
OPT − εT − nkx (8)

Proof Outline. Applying Lemma 2 for all i ∈ {1, .., k},
with probability (1− kδ/k) = (1 − δ) the conclusion
of the Lemma holds for all i.

Next, an analogous proof as for Theorem 1 applies,
except replacing R(T ) with ε

kT and noting that the
regret during the nkx exploration steps is at most 1
for every time step.

It is interesting to note that, in contrast to the Ranked
Bandits Algorithm, this algorithm can be adapted to
the case where clicked documents provide real valued
payoffs. The only modification necessary is that docu-
ments should always be presented by decreasing payoff
value. However, we do not address this extension fur-
ther due to space constraints.

6. Evaluation

In this section, we evaluate the Ranked Bandits and
Ranked Explore and Commit algorithms, as well as
two variants of RBA, with simulations using a user
and document model.

We chose a model that produces a user population and
document distribution designed to be realistic yet al-
low us to evaluate the performance of the presented
algorithms under different levels of noise in user click-
ing behavior. Our model first assigns each of 20 users
to topics of interest using a Chinese Restaurant Pro-
cess (Aldous, 1985) with parameter θ = 3. This led
to a mean of 6.5 unique topics, with topic popularity
decaying according to a power law. Taking a collection
of 50 documents, we then randomly assigned as many
documents to each topic as there were users assigned
to the topic, leading to topics with more users having
more relevant documents. We set each document as-
signed to a topic as relevant to all users assigned to
that topic, and all other documents as non relevant.
The probabilities of a user clicking on relevant and
non-relevant documents were set to constants pR and
pNR respectively.

We tested by drawing one user uniformly from the
user population at each time step, and presented this
user with the ranking selected by each algorithm, using
k = 5. We report the average number of time steps
where the user clicked on a result, and the average
number of time steps where at least one of the pre-
sented documents was relevant to the user. All num-
bers we report are averages over 1,000 algorithm runs.

6.1. Performance Without Click Noise

We start by evaluating how well the REC and RBA
algorithms maximize the clickthrough rate in the sim-
plest case when pR = 1 and pNR = 0. We also compare
their performance to the clickthrough rate that the
same users would generate if presented with a static
system that orders documents by decreasing true prob-
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Figure 1. Clickthrough rate of the learned ranking as a
function of the number of times the ranking was presented
to users.

ability of relevance to the users assuming document
relevances are independent. Figure 1 shows that both
REC and RBA perform well above the static baseline
and well above the performance guarantee provided by
the theoretical results. This is not surprising, as the
(1 − 1/e)OPT bound is a worst-case bound. In fact,
we see that REC with x = 1000 nearly matches the
performance of the best possible ranking after finish-
ing its initial exploration phase. We also see that the
exploration parameter of REC plays a significant role
in the performance, with lower exploration leading to
faster convergence but slightly lower final performance.
Note that despite REC performing best here, the rank-
ing learned by REC is fixed after the exploration steps
have been performed. If user interests and documents
change over time, the performance of REC could fall
arbitrarily. In contrast, RBA is guaranteed to remain
near or above the (1− 1/e)OPT bound.

6.2. Effect of Click Noise

In Figure 1, the clickthrough rate and fraction of users
who found a relevant document in the top k positions
is identical (since users click if and only if they are
presented with a relevant document). In contrast,
Figure 2 shows how the fraction of users who find
a relevant document decays as the probability of a
user clicking becomes noisier. The figure presents the
performance lines for REC and RBA across a range
of click probabilities, from (pR = 1, pNR = 0) to
(pR = 0.7, pNR = 0.3). We see that both algorithms
decay gracefully: as the clicks become noisier noisy,
the fraction of users presented with a relevant docu-
ments decays slowly.

6.3. Optimizing Practical Effectiveness

Despite the theoretical results shown earlier, it would
be surprising if an algorithm designed for the worst
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Figure 2. Effect of noise in clicking behavior on the quality
of the learned ranking.

case had best average case performance. Figure 3
shows the clickthrough rate (which the algorithms op-
timize), and fraction of users who find relevant doc-
uments (which is of more interest to information re-
trieval practitioners), for variants building on the in-
sights of the ranked bandits idea. Specifically, two
variants of RBA that have the best performance we
could obtain in our simulation are shown. We found
that using a UCB1-based multi-armed bandit algo-
rithm (Auer et al., 2002a) in place of EXP3 improves
the performance of RBA substantially when user inter-
ests are static. Note however, that UCB1 does not sat-
isfy the constraints presented in Section 4.2 because it
assumes rewards are identically distributed over time,
an assumption violated in our setting when changes in
the documents presented above rank i alter the reward
distribution at rank i. Nevertheless, we see that this
modification substantially improves the performance
of RBA. We expect such an algorithm to perform best
when few documents are prone to radical shifts in pop-
ularity.

7. Conclusions and Extensions

We have presented a new formulation of the learning
to rank problem that explicitly takes into account the
relevance of different documents being interdependent.
We presented, analyzed and evaluated two algorithms
and two variants for this learning setting. We have
shown that the learning problem can be solved in a
theoretically sound manner, and that our algorithms
can be expected to perform reasonably in practice.

We plan to extend this work by addressing the non-
binary document relevance settings, and perform em-
pirical evaluations using real users and real documents.
Furthermore, we plan to investigate how prior knowl-
edge can be incorporated into the algorithms to im-
prove speed of convergence. Finally, we plan to inves-
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Figure 3. In a practical setting, it may be beneficial to use a
variant of RBA to obtain improved performance at the cost
of weaker theoretical guarantees. Performance is shown in
realistic settings pR = 0.8, pNR = 0.2.

tigate if the bandits at different ranks can be coupled
to improve the rate at which RBA converges.
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