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Abstract

When the transition probabilities and re-
wards of a Markov Decision Process (MDP)
are known, an agent can obtain the optimal
policy without any interaction with the envi-
ronment. However, exact transition probabil-
ities are difficult for experts to specify. One
option left to an agent is a long and poten-
tially costly exploration of the environment.
In this paper, we propose another alternative:
given initial (possibly inaccurate) specifica-
tion of the MDP, the agent determines the
sensitivity of the optimal policy to changes in
transitions and rewards. It then focuses its
exploration on the regions of space to which
the optimal policy is most sensitive. We show
that the proposed exploration strategy per-
forms well on several control and planning
problems.

1. Introduction

When the transition probabilities and rewards of an
MDP are known, the optimal policy can be computed
offline. However, it is unrealistic to expect a domain
expert to accurately specify thousands of MDP pa-
rameters. The optimal policy computed offline in an
imperfectly modeled world may turn out to be subop-
timal when executed in the actual environment. To
fix this problem in practice, both rewards and transi-
tion probabilities are tweaked by domain experts until
the desired performance is achieved. An alternative
approach is to allow the agent to explore the world
in a model-free fashion using reinforcement learning
(RL). However, reinforcement learning in the actual
environment is time-consuming, expensive, and some-
times dangerous (Abbeel and Ng (2005), for example,
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describe a helicopter crash which occurred during an
overly aggressive exploration).

In this work, we introduce an approach called active re-
inforcement learning which combines the strengths of
offline planning and online exploration. In particular,
our framework allows domain experts to specify pos-
sibly inaccurate models of the world offline. However,
instead of using this model for planning, our algorithm
uses it as a blueprint for exploration. Our approach
is based on the observation that, while all of the tran-
sition probabilities and rewards in the model may be
misspecified, it is not important to know all of them to
determine the optimal policy. Consider a surveillance
helicopter flying agent. Does it make a difference if it
crashes with probability 0.9 or 0.95 when it flies close
to the ground? It seems unlikely that the optimal pol-
icy would be very sensitive to this value. However,
the probability of the agent taking a good photograph
of its target from a given viewing angle is extremely
important. Therefore, the primary goal of the agent’s
experimentation, given a description of the problem,
should be to determine the probabilities of capturing
a photo of the target as opposed to trying to determine
the exact probability of crashing. Active reinforcement
learning enables this type of exploration. It uses sen-
sitivity analysis to determine how the optimal policy
in the expert-specified MDP is affected by changes in
transition probabilities and rewards of individual ac-
tions. This analysis guides the exploration process by
forcing the agent to sample the most sensitive actions
first. We will present experimental results demonstrat-
ing the effectiveness of active RL. In addition, we will
show that, while our algorithm is approximate, it pro-
duces near-optimal results in polynomial time for a
special class of MDPs.

2. Related Work

Many strategies have been proposed to address the dif-
ficulty of specifying MDPs offline. Givan’s bounded-
parameter MDP framework (Givan et al., 2000) allows
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the designer to specify uncertainty intervals around
MDP’s transition probabilities and rewards. The
agent then finds the best policy in a game against ad-
versarial nature which picks the worst possible world
in which to evaluate it. (Alternative specifications of
prior uncertainty in the same framework are given in
Nilim and Ghaoui (2003).) While intuitively appeal-
ing, this approach may pick an overly conservative pol-
icy which is far from optimal for a given environment.
Moreover, it places an excessive demand on the de-
signer to quantify not only the prior model, but also
his uncertainty about its transition probabilities.

In the online RL setting, there are plenty of reinforce-
ment learning approaches that use optimistic explo-
ration in face of uncertainty, such as E3 (Kearns &
Singh, 2002), R − MAX (Brafman & Tennenholtz,
2002), and model-based interval exploration (Strehl &
Littman, 2005). The main idea of these algorithms is
to explore the actions the agent has experienced the
fewest number of times in the past. This criterion does
not apply to prior knowledge. In this paper, we focus
on the problem of determining which states are worth
exploring based solely on the prior MDP specification.

An approach similar in spirit to ours is Bayesian re-
inforcement learning (Dearden et al., 1999), which
imposes a prior distribution over possible worlds and
updates it based on interactions with the environment.
However, this approach makes use of unrealistic as-
sumptions on the shapes of probability distributions
and approximate sampling to ensure tractability. The
largest problem to which it was applied is two orders of
magnitude smaller than the problems we solve in this
work. In addition, we present an approximate version
of our algorithm which is able to handle much larger
(possibly continuous) state/action spaces.

The idea of using a prior MDP specification to re-
duce the amount of exploration in RL has also been
explored by Abbeel et al. (2006). However, they
only handle deterministic environments and their ex-
ploration is driven by the perceived optimal policy, not
sensitivity analysis.

3. Preliminaries

The Markov decision process is defined by a tuple
(S,A, T,Next,R, α), where S = {1, .., |S|} is a fi-
nite set of states, A is a finite set of actions, R(s, a)
is a reward function, T (s′|s, a) is a transition prob-
ability function, α ∈ (0, 1) is the discount factor.
Next(s, a) = {s′ : T (s′|s, a) > 0} defines a set
of states reachable in one step with nonzero prob-
ability after taking action a ∈ A in a state s ∈

S. Since transition probabilities of all the states in
Next(s, a) are constrained to lie in the probability
simplex ∆(Next(s, a)), T (·|s, a) is a function with
|Next(s, a)| − 1 degrees of freedom. To make this ex-
plicit, let Next(s, a) denote an arbitrary state such
that T (Next(s, a)|s, a) = 1 −

∑
s′∈Next(s,a) T (s′|s, a),

where Next(s, a) = Next(s, a)\Next(s, a) is the set of
states in Next(s, a) other than the state Next(s, a),
and let T |s, a denote the restriction of T (·|s, a) to
Next(s, a).

Let π(s) define a deterministic policy which maps
states to actions. Let Tπ(s, s′) = T (s′|s, π(s)) be the
|S| × |S| transition probability matrix and Rπ(s) =
R(s, π(s)) be the |S| × 1 reward vector under π. Then
the value matrix V π(T,R) is given by the Bellman
equation V π = αTπV π +Rπ. V π can be computed ef-
ficiently via iterative application of the Bellman equa-
tion, known as policy evaluation.

The utility of a policy π, Uπ(T,R), is given
by the expected discounted rewards: Uπ(T,R) =
Es0∼DV π(s0;T,R), with initial state s0 drawn from
the distribution D. The utility of a policy explicitly de-
pends on the transition and reward model of the MDP.

We need one more piece of notation to describe the
algorithm. We want to be able to take a tran-
sition probability function T and replace the tran-
sition probabilities T (·|ŝ, â) of a fixed state/action
pair ŝ, â with a given probability distribution X ∈
∆(Next(ŝ, â)), leaving the rest of the probabilities the
same. To do this, we define the replacement function

Wŝ,â[T,X](s′|s, a) ,

{
X(s′), if s, a = ŝ, â

T (s′|s, a), otherwise
.

Similarly, the function Yŝ,â[R, r](s, a) , {r if s, a =
ŝ, â and R(s, a) otherwise} replaces the reward of the
chosen state/action pair with r.

4. Active RL Algorithm

In this section, we give a general overview of the active
reinforcement learning algorithm.

Let T0, R0 be the user-supplied model of transition
probabilities and rewards for an MDP. We can use
Taylor’s approximation to model the local sensitiv-
ity of Uπ(T0, R0) as the transition probabilities X ∈
∆(Next(ŝ, â)) are perturbed around some specified
value T1 for a single state/action pair ŝ, â:

Ûπ
T1

(Wŝ,â[T0,X]) ≈ Uπ(Wŝ,â[T0,T1], R0)+

∇X|ŝ,âUπ(Wŝ,â[T0,T1], R0)(X|ŝ, â−T1|ŝ, â)

Transition probabilities for all the actions other than
the action â in state ŝ are held fixed at the values
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defined by the user-supplied model T0. Similarly, the
rewards of all the actions are held fixed at the user-
supplied values R0. Sensitivity of the utility function
to changes in rewards R(s, a) of individual actions is
modeled in an analogous fashion.

The above approximation fixes the transition probabil-
ities for all the actions except one, and approximates
the utility of the best policy around any specified point
T1 in the transition probability simplex of that one ac-
tion. In this section, we assume that it is possible to
compute this Taylor’s expansion efficiently and explain
the main idea of our algorithm, deferring the details
of computing the gradient to Section 5.

Taylor’s approximation makes it possible to determine
how the payoff from following a fixed policy is affected
by the changes in the MDP parameters. However, even
large changes in payoffs do not necessarily mean that
the agent is acting suboptimally. An extreme illus-
tration of this is a gridworld agent who is rewarded
only upon getting to the goal state. Even if the agent
is wrong about the magnitude of the reward, its op-
timal policy remains the same: always move towards
the goal. Thus, an agent could be completely wrong
about the environment and still act optimally. The key
goal of the sensitivity analysis is to determine how the
optimal policy changes in response to the changes in
the transition probabilities and rewards. One way to
measure this sensitivity is by asking the question: how
much do transition probabilities/rewards of a given ac-
tion have to change before the currently optimal policy
becomes suboptimal?

To make this question precise, let us first focus on
the sensitivity to transition probabilities. We will use
ΠT1;ŝ,â = arg maxπ Uπ(Wŝ,â[T0,T1], R0) to denote the
optimal policy in the MDP in which all transitions ex-
cept for those of action â in state ŝ are held fixed at T0,
and transitions of ŝ, â are given by T1. Let C = {T :
UΠT0;ŝ,â(Wŝ,â[T0,T], R0) ≥ UΠT ;ŝ,â(Wŝ,â[T0,T], R0)}
define a region in the transition probability space in
which the optimal policy ΠT0

for the user-specified
MDP dominates every other policy. The goal of sensi-
tivity analysis is to find the radius of the largest ball
which we can position at T0 and expand without leav-
ing the confines of C along the dimensions T (·|ŝ, â)
corresponding to the transitions for a given action â

in ŝ. The larger the ball, the more robust the optimal
policy is to the changes in the transition probabili-
ties of the given action â. However, it is not obvious
how to compute this quantity exactly. Instead, we
approximate it via a variant of Newton’s root-finding
method which starts out at some point T ′

0 in the tran-
sition probability space outside of C and converges to a

Figure 1. Newton’s method for sensitivity analysis of
MDPs. The X-axis is the probability of transition to s′ for
a single chosen ŝ, â pair that leads to one of two states s′ or
s′′ (the probability of transition to s′′ is 1−X). The utili-
ties of policies are linear functions of X. Function UΠT (X)
is the utility of the policy which is optimal when X = T . It
is given by the upper envelope of the set of all value func-
tions. C is the (blue) region where the optimal policy at
T0 (red line) dominates every other policy. The algorithm
starts at T ′

0 and converges to T ′

2 on the boundary of C.

point on the boundary of C. The method is illustrated
in Figure 1. Each application of the method consists
of starting out at some point T ′

0, replacing the utility

function U
ΠT ′

0
;ŝ,â(Wŝ,â[T0,T

′
0], R0) of the best policy

at T ′
0 with its tangent, finding the “zero” of this tan-

gent, i.e., a point T ′
1 closest to T0 in the intersection

of this tangent and the tangent to the utility function
at T0, replacing the initial estimate T ′

0 with the new
estimate T ′

1, and iterating.

The pseudocode for this algorithm consists of the fol-
lowing steps:

1. Determine the optimal policy ΠT0;ŝ,â for the user-
provided model using any MDP solver.

2. Determine the Taylor approximation of the utility

of this policy Û
ΠT0;ŝ,â

T0
(Wŝ,â[T0,X]) as a function

of transition probabilities X ∈ ∆(Next(ŝ, â)).

3. Select the starting point T ′
0 ∈ ∆(Next(ŝ, â)) and

let i← 0.

4. Using any MDP solver, determine the optimal
policy ΠT ′

i
;ŝ,â for the user-provided model with

transition probabilities of action â in state ŝ re-
placed by T ′

i .
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5. Determine the Taylor approximation of the utility

of this policy Û
ΠT ′

i
;ŝ,â

T ′

i

(Wŝ,â[T0,X]) as a function

of transition probabilities X ∈ ∆(Next(ŝ, â)).

6. Let T ′
i+1 be the point in the intersection of

Û
ΠT0;ŝ,â

T0
(Wŝ,â[T0,X]) and Û

ΠT ′

i
;ŝ,â

T ′

i

(Wŝ,â[T0,X])

closest to the user-specified model T0. Find T ′
i+1

by solving the following second-order cone pro-
gram1:

T ′
i+1 = arg min

X

∥∥X|ŝ, â−T0|ŝ, â
∥∥

s.t.Û
ΠT0;ŝ,â

T0
(Wŝ,â[T0,X]) = Û

ΠT ′

i
;ŝ,â

T ′

i

(Wŝ,â[T0,X])

[X|ŝ, â] � 0; [X|ŝ, â]T e ≤ 1,

where e is a vector of all 1’s

The last set of constraints ensures that T ′
i+1 is a

valid probability distribution.

7. Let i← i+1 and repeat steps 4-7 while ΠTi;ŝ,â 6=
ΠT0;ŝ,â.

8. Return
∥∥T ′

i |ŝ, â− T0|ŝ, â
∥∥

The algorithm returns an estimate of the maximum-
radius sensitivity ball about the user-specified transi-
tion model T0. The estimate is the minimum over a
set of restarts of Newton’s method, initializing T ′

0 to
each vertex of the probability simplex ∆(Next(ŝ, â)).
The quality of the estimate is limited both by the finite
number of iterations of Newton’s method and by the
limited number of restarts. The algorithm is executed
for every state/action pair ŝ, â to find which actions
are most sensitive to changes in transition probabilities
of the user-supplied model. We confirmed experimen-
tally that the estimates of the radius of the sensitivity
ball produced by our algorithm are very close to the
true values when the dimensionality of the probability
simplex is small.

An analogous algorithm is used to determine the sen-
sitivity of the MDP to perturbations in individual re-
wards. We have not yet described how to compute the
Taylor approximation of the utility function. We will
do so in the next section.

5. Sensitivity of a Policy

By definition of the gradient and linearity of expec-
tation, the gradient of the utility function is given by
∇X|ŝ,âUπ(Wŝ,â[T0,X], R0) =

1Second-order cone programs (SOCPs) are a special
case of semidefinite programs which can be solved more
efficiently, see (Lobo et al., 1998) for an overview.

[Es0∼D
∂V π(s0;Wŝ,â[T0,X],R0)

∂X(s′

j
) ]

|Next(ŝ,â)|
j=1 ;s′j ∈ Next(ŝ, â).

To compute the gradient of the value function, we need
the following lemma:

Lemma 5.1. For a given policy π, a [state,action,next
state] tuple [ŝ, â, s′] : s′ ∈ Next(ŝ, â), a transition
function for the given [ŝ, â]: X ∈ ∆(Next(s, a)),
reward function R0, let transition function T =

Wŝ,â[T0,X]. Then ∂V π(s0;T,R0)
∂X(s′) , 0 for â 6= π(ŝ). For

â = π(ŝ), let V π be the policy value function which
satisfies the Bellman equation and let an |S|× |S| ma-
trix Lπ define the directional vector for the derivative:

Lπ(si, sj) ,





1, if sj = s′

−1, if sj = Next(ŝ, â)
0, otherwise

. Then the

partial derivative ∂V π(s0;T,R0)
∂X(s′) can be computed from

the recurrence ∂V π(T,R0)
∂X(s′) = αTπ ∂V π(T,R0)

∂X(s′) + αLπV π.

The form of this recurrence is exactly the same as
that of the Bellman equation, with the value function
replaced by its derivative and the reward function re-
placed by αLπV π. Therefore, policy evaluation can be

used to compute ∂V π(s0;T,R0)
∂X(s′) .

Proof. (sketch) A slight modification of the analysis

given in (Cao, 2003) shows that ∂V π(T,R0)
∂X(s′) = α(I −

αTπ)−1LπV π, where I is the |S| × |S| identity ma-
trix. In order to compute the directional derivatives
efficiently, note that this equation can be rewritten as
the above recurrence.

Applying a similar analysis to calculate the derivative
of the utility function with respect to the reward x

for a given state/action pair [ŝ, â], we obtain (letting

the reward function R = Yŝ,â(R0, x)): ∂V π(T0,R)
∂x

=

αTπ
0

∂V π(T0,R)
∂x

+ M where M(si) ,

{
1, if si = ŝ

0, otherwise

for â = π(ŝ) and ∂V π(T,R)
∂x

, 0 for â 6= π(ŝ).

6. Convergence and Complexity

In this section, we consider the algorithm’s conver-
gence and complexity. The geometric structure of
our algorithm is similar to policy iteration which has
well-known connections to Newton’s method (Puter-
man, 1994; Madani, 2000). Just like in policy itera-
tion, the known local quadratic convergence of New-
ton’s method does not ensure global polynomial time
complexity. Unlike policy iteration, we cannot rely
on properties of contractions to establish convergence.
However, we can establish convergence for MDPs
whose structures (given by transitions with nonzero
probabilities) are directed acyclic graphs (DAGs). For
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such MDPs, the values Uπ(Wŝ,â[T0,X], R0) are linear
functions of X|ŝ, â for single state/action pairs [ŝ, â].
We have the following result which follows from the
Intermediate Value Theorem:

Theorem 6.1. Suppose that for a given ŝ, â and for
every policy π, Uπ(Wŝ,â[T0,X];R0) is a linear func-
tion of X|ŝ, â. Then, for any initial point T ′

0 ∈
∆(Next(ŝ, â)), the sequence {T ′

i} generated by the ac-
tive RL algorithm converges to the boundary of C in a
finite number of steps.

For DAG-structured MDPs such that the maximum
number of Next states for any state/action pair is two,
much stronger guarantees are available. As pointed
out in (Madani, 2000), any DAG-structured MDP can
be converted in polynomial time into an MDP of this
form by introducing extra states and transitions as
necessary. The significance of these MDPs is that,
since Next(ŝ, â) is a singleton, Uπ(Wŝ,â[T0,X], R0) is
a linear function of a single variable X|ŝ, â. The follow-
ing theorem shows that our algorithm can determine
the radius of the region C in logarithmic time in this
degenerate case:

Theorem 6.2. Define the distance between two
policies π and π′ as maxX|U

π(Wŝ,â[T0,X], R0) −

Uπ′

(Wŝ,â[T0,X], R0)|. Let γ be the smallest distance
larger than 0 between any policy and ΠT0;ŝ,â. Let the
MDP have bounded rewards: |R0(s, a)| ≤M for ∀s, a.
Then, after t = O(log( M

γǫ(1−α) )) iterations, the iterates

T ′
i≥t of Newton’s method are within ǫ of the limit point

on the boundary of C.

Proof. (sketch) The proof follows from a known
fact that one-dimensional Newton’s method makes
progress in each iteration by either exponentially de-
creasing the height or exponentially increasing the
slope of the function Uπ(Wŝ,â[T0,X], R0). (Madani,
2000).

If the structure of an MDP is not a DAG, then
Uπ(Wŝ,â[T0,X], R0) is not linear in X|ŝ, â and the
above convergence results no longer apply. However,
as the discount factor α → 0, the value function for
any MDP will become approximately linear as the in-
fluence of distant rewards becomes negligible. Thus,
Newton’s method offers a way to find an approximate
solution to our problem which becomes more accurate
as the discount factor decreases. For general root-
finding problems, Newton’s method need not converge
(i.e., it may cycle or diverge to infinity). It is possible
that our variant may also exhibit this undesirable be-
havior when applied to arbitrary MDPs. However, our
experimental results in Section 8 demonstrate that our

Figure 2. Sailboat Domain. Black lines indicate the paths
of the boat for a set of possible initial policies. The boat
is controlled by the rudder and the sail.

method works well in practice on a wide range of prob-
lems even when strong assumptions required to obtain
theoretical guarantees for convergence are significantly
violated.

7. Approximate Active RL

In worlds with very large or continuous state/action
spaces, the exact Active RL algorithm of Section 4
is intractable. Moreover, in continuous state spaces,
sensitivity of individual state/action pairs no longer
applies. Instead, we consider the case where the state
space is partitioned into regions B with the uncertainty
in our transition model for each region generated by a
random variable.

Formally, we assume that the world is governed by the
control model st+1 = f(st, a, d(B(st)). The agent’s
state s at time t + 1 is a (possibly nonlinear) function
f of the agent’s state at time t, its action a, and the
disturbance input d. In every region B̂ ∈ B, the dis-
turbance d(B̂) is a random variable with a probability
distribution T ∈ ∆(Next(B̂)) defined on a discrete set
Next(B̂) = Next(B̂) ∪ Next(B̂). The approximate
active RL procedure determines which regions B̂ ∈ B

affect the optimal policy the most.

Consider, for example, the sailing problem illustrated
in Figure 2. The agent’s goal in this domain is to get
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the sailboat to the finish line. The sailboat is con-
trolled by the rudder and the sail. The problem is
complicated by a probabilistic whirlpool which could
aid the agent by increasing its speed or detain it by
deviating the boat from its course. In this case, the
function f describes the sailboat dynamics given the
boat’s position, the rudder/sail action, the determinis-
tic wind, and the whirlpool current d. The strength of
the current and its direction are given by a distribution
T which depends on the band B̂ inside the whirlpool
in which the agent finds itself. Approximate active
RL helps us find a small number of bands in which the
current determines which one of the policies shown in
Figure 2 is optimal.

The approximate active RL procedure is the same
as its exact variant, except that: 1) local policy
search is used in place of an MDP solver2, 2) the

utility Ũπ(T,R) of any policy π is approximated
by Markov Chain Monte Carlo, and 3) the Tay-
lor approximation of a policy’s utility is given by
Ûπ

T1
(WB̂ [T0,X]) ≈ Ũπ(WB̂ [T0,T1], R0) +

∇
X|B̂

Uπ(WB̂ [T0,T1], R0)(X|B̂ − T1|B̂), where

WB̂ [T0;T1] is a world in which the disturbance

distribution in band B̂ is replaced with T1, and
the gradient of the utility function is approximated
linearly by perturbing the transition probabil-
ities by a small value ǫ in each dimension of
the probability simplex: ∇

X|B̂
Uπ(WB̂ [T0,T1], R0) ≈

1
ǫ
[Ũπ(WB̂ [T0,T

j;B̂
1 ], R0)−Ũπ(WB̂ [T0,T1], R0)]

Next(B̂)
j=1

where T
j;B̂
1 denotes the world in which the transitions

in region B̂ are perturbed by ǫ as follows:

T
j;B̂
1 (d′) ,





T1(d′) + ǫ, if d′ = dj

T1(d′)− ǫ, if d′ = Next(B̂)
T1(d′), otherwise

8. Experiments

Exact RL experiments were performed on the following
domains:

• In the mountain-car task (231 states), the prob-
lem is to drive a car up a steep mountain (Sutton
& Barto, 1998). The engine power is a uniform
random variable on the interval [.15, .3].

• The task in the cart-pole problem (5832 states) is
to balance a pole on a moving cart. The power of
the cart is random, uniformly distributed in the

2Any local policy search algorithm, such as policy gra-
dient or dynamic programming, can be used for this pro-
cedure.

interval [20, 75].

• Windy gridworld is a simple 10×7 gridworld with
agent’s movement affected by stochastic wind
(Sutton & Barto, 1998).

• Pizza delivery problem (4769 states) is based on
the racetrack example (Sutton & Barto, 1998).
The agent’s goal is to drive a car to the finish
line, while delivering as many pizzas and avoiding
as many randomly placed potholes as possible.

• The drunkard’s walk problems are two 10 × 10
gridworlds with random rewards and penalties.
When the agent moves in some direction, it is
equally likely to deviate diagonally from it.

In all the setups, α = 0.9 was used. The structure of
the MDPs varies widely from one problem to another
(and none of them are DAGs). In the first set of exper-
iments, the effectiveness of active reinforcement learn-
ing for transition probabilities was evaluated. The sys-
tem was provided with an initial description of the
problem, as given above. It then performed the sen-
sitivity analysis and sorted state/action pairs based
on their sensitivity values. A different problem spec-
ification was then generated by randomly perturbing
all the transition probabilities. This new specification
represented the actual world in which transition prob-
abilities are different from the expert-provided MDP
specification. The agent was allowed to sample one
action at a time in this actual world3, replace user-
specified transition probabilities with their maximum
likelihood estimates (based on 10,000 samples), use an
MDP solver to find the optimal policy in this “cor-
rected” MDP, and evaluate this policy in the actual
world. We tested two different ways of selecting the
order in which actions were tested: 1) the active RL
agent which samples the actions in order of decreas-
ing sensitivity, with sensitivities computed by the al-
gorithm in Section 4, and 2) the random agent which
samples actions randomly. For comparison, we also
tested two agents applying fixed policies: 1) the prior
agent which applies the optimal policy for the expert-
provided MDP specification, and 2) the omniscient
agent which knows the transition probabilities in the
actual test world and selects the optimal policy for this
world. In addition, we tested the Q-learning agent
with ǫ−greedy exploration (ǫ = 0.1) and full back-
ups (full backups means that after taking an action in
a state, the agent gets full information about all the

3This exploration strategy (sampling with resets) as-
sumes that the agent can execute any action in any state
and observe its outcome without having to plan how to get
to that state.
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a) Perturbed Transitions b) Perturbed Rewards
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Figure 3. Evaluation of exploration strategies on perturbed MDPs. Error bars are based on 95% confidence intervals.

transition probabilities for all the possible next states
for that action - this model was used to make the com-
parison between the Q-learning agent and the Active
RL agent fair). The utility of the policy of each of
these five agents appears in the plots in Figure 3-(a)
as a function of the number of actions tested. The
results are averaged over 100 different randomly gen-
erated actual worlds4. In each domain, the active RL
agent outperforms the random sampling agent. The
prior agent which relies solely on the expert’s spec-
ification performs poorly, indicating the need for ex-
ploration. As expected, the Q-learning agent performs
poorly initially since it has no prior knowledge, but im-
proves with experience. It rarely catches up with the
Active RL agent because Q-learning is forced to ex-
plore without resets. These experiments indicate that

4The test worlds were generated by perturbing transi-
tion probabilities of each action uniformly in the proba-
bility simplex within a radius of 0.6 around the expert-
specified values T0. A random variable T ∈ R

n uni-
formly distributed on the n-dimensional probability sim-
plex can be generated from n − 1 random variables
X1, .., Xn−1 ∼ Uniform(0, 1) by sorting them into X(0) ,

0, X(1), .., X(n−1), X(n) , 1, and letting Ti = X(i) − X(i−1)

(Devroye, 1986). Rejection sampling is then used to ensure
that ‖T − T0‖ ≤ 0.6.

integrating Active RL with Q-learning may result in
improvement in the Q-learning agent’s performance.
This is an important future extension of our work.

In the next experiment, the random worlds were gener-
ated by perturbing the rewards rather than transition
probabilities of the MDP5. Performance of the four
exploration strategies on the three domains with non-
trivial reward structure appear in Figure 3-(b). Once
again, the active RL agent significantly outperforms
the random sampling agent.

Finally, we experimented with approximate active RL
in the sailboat simulation, in which the agent must
navigate a whirlpool of water current to reach the fin-
ish line. The whirlpool was modeled by ten concen-
tric bands based on the distance from the center of
the vertex, and the magnitude of the current varied
proportionally to this distance. The expert-specified
world reflected uncertainty about the direction of the
whirlpool current: the direction of the current was
counterclockwise with probability 0.1, clockwise with
probability 0.1, and there was no current with prob-

5The test worlds were generated by perturbing all the
nonzero rewards uniformly in the interval [−70, 70] around
the expert-specified values.



Active Reinforcement Learning

 0
 0.005
 0.01

 0.015
 0.02

 0.025
 0.03

 0.035
 0.04

 0.045
 0.05

 1  2  3  4  5  6  7  8  9  10

V
al

u
e

Number of sampled regions

Sailboat, No Wind

 0.0012

 0.0014

 0.0016

 0.0018

 0.002

 0.0022

 0.0024

 0.0026

 0.0028

 1  2  3  4  5  6  7  8  9  10

V
al

u
e

Number of sampled regions

Sailboat, Clockwise Wind

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 1  2  3  4  5  6  7  8  9  10

V
al

u
e

Number of sampled regions

Sailboat, Counterclockwise Wind

Figure 4. Evaluation of exploration strategies in the approximation architecture. The legend is the same as in figure 3,
but with Prior strategy not shown (its value is too low to appear on the plots). Error bars are based on 95% confidence
intervals.

ability 0.8. In each iteration of the active RL algo-
rithm, local policy search was performed from each of
the seven policies shown in Figure 2, and the best pol-
icy was selected. Approximate Active RL was tested
in three actual worlds: one with a deterministic clock-
wise current, one with a deterministic counterclock-
wise current, and one with no current. The results
appear in Figure 4. In the two worlds with current,
the algorithm which samples bands according to the
active RL-prescribed order outperforms the algorithm
which samples bands according to a random order. In
the world with no current, the performance of the two
algorithms is similar.

9. Conclusions

In this paper, we presented a new algorithm for com-
bining exploration with prior knowledge in reinforce-
ment learning. We demonstrated that our algorithm
can be implemented efficiently using policy iteration
and a standard SOCP solver. We also introduced an
approximate version of active RL to be applied in do-
mains with large state spaces. In addition to being
useful for exploration, the active RL algorithm can be
used by an MDP designer to determine which regions
of the state space require most precision in specifying
transition probabilities and rewards. An important fu-
ture extension of this work is designing a policy which
explores the sensitive regions of the state space with-
out resets.

References

Abbeel, P., & Ng, A. Y. (2005). Exploration and
apprenticeship learning in reinforcement learning.
ICML.

Abbeel, P., Quigley, M., & Ng, A. (2006). Using inac-
curate models in reinforcement learning. ICML.

Brafman, R. I., & Tennenholtz, M. (2002). R-MAX - A
general polynomial time algorithm for near-optimal

reinforcement learning. Journal of Machine Learn-
ing Research, 3, 213–231.

Cao, X. (2003). From perturbation analysis to markov
decision processes and reinforcement learning. Dis-
crete Event Dynamic Systems: Theory and Applica-
tions, 13, 9–39.

Dearden, R., Friedman, N., & Andre, D. (1999). Model
based bayesian exploration. Uncertainty in Artificial
Intelligence.

Devroye, L. (1986). Non-uniform random variate gen-
eration. New York, NY: Springer-Verlag.

Givan, R., Leach, S., & Dean, T. (2000). Bounded-
parameter markov decision processes. Artificial In-
telligence, 122, 71–109.

Kearns, M., & Singh, S. (2002). Near optimal rein-
forcement learning in polynomial time. Machine
Learning, 49, 209–232.

Lobo, M. S., Vandenberghe, L., Boyd, S., & Lebret,
H. (1998). Applications of second-order cone pro-
gramming. Linear Algebra and its Applications, 284,
193–228.

Madani, O. (2000). Complexity results for infinite-
horizon markov decision processes. Doctoral disser-
tation, University of Washington.

Nilim, A., & Ghaoui, L. E. (2003). Robustness in
markov decision problems with uncertain transition
matrices. NIPS.

Puterman, M. (1994). Markov decision processes—
discrete stochastic dynamic programming. New
York, NY: John Wiley & Sons, Inc.

Strehl, A. L., & Littman, M. L. (2005). A theoretical
analysis of model-based interval estimation. ICML.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement
learning: An introduction. Cambridge, MA: MIT
Press.


