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Abstract

We provide a theoretical analysis of the
chance accuracies of large collections of clas-
sifiers. We show that on problems with small
numbers of examples, some classifier can per-
form well by random chance, and we derive
a theorem to explicitly calculate this accu-
racy. We use this theorem to provide a prin-
cipled feature selection criterion for sparse,
high-dimensional problems. We evaluate this
method on microarray and fMRI datasets
and show that it performs very close to the
optimal accuracy obtained from an oracle.
We also show that on the fMRI dataset this
technique chooses relevant features success-
fully while another state-of-the-art method,
the False Discovery Rate (FDR), completely
fails at standard significance levels.

1. Introduction

There are many real world problems in which a large
number of experts predict the outcome of a small num-
ber of events. For example, we may ask one hundred
football fans to predict the outcome of twenty games,
or we may ask fifty political pundits to predict the
outcome of ten elections.

With only a small number of events to predict, there
may be a reasonable chance that some expert may pre-
dict all the outcomes perfectly, even if the outcomes
are chosen at random.

For example, suppose we ask a person to predict the
outcome of five coin flips where the probability of ob-
taining heads is 0.5. Since the flips are independent,
this person has a (0.5)5 = 1

32 chance of guessing the
outcome of all flips correctly. Now, if we ask ten people
to predict the outcome of the five flips, there is a much
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higher chance that someone will predict all outcomes
perfectly. With thirty-two people, someone would (in
expectation) guess correctly each time.

Suppose we repeated this experiment again but asked
our participants to predict the outcome of thirty coin
flips. In this case, the chance of obtaining a perfect
prediction would be nearly 1 in 1 billion. Given any
number of participants less than 1 billion, we would
not expect any participant to perfectly predict all the
outcomes. But some participant will predict a series
of outcomes that is most similar to the true flips.

How accurate should we expect this participant’s pre-

dictions to be?

We consider this question and its relevance to machine
learning. In our setting, we consider experts that are
not people, but rather classification algorithms that
predict labels for a set of examples.

When a large number of classifiers predict labels for a
small number of examples, some classifiers will predict
the labels well purely by random chance. This may
lead us to believe that a subset of the classifiers are
actually good predictors, when in fact they may be
just guessing randomly.

This effect is commonly seen in discriminative feature
selection, where a feature is selected based on the ac-
curacy of a classifier trained on that single feature
and tested on a held-out set of validation examples.
In modern high-dimensional machine learning appli-
cations such as fMRI or microarray analysis, there are
typically thousands of features with less than one hun-
dred examples. Classification tasks in such settings of-
ten have sparse solutions, meaning that only a small
subset of the features are useful for predicting the cor-
rect class.

To determine which features are relevant, it would be
useful to know how well some classifier could perform
if all classifiers just chose labels at random. We would
like to know how this accuracy changes with both the
number of features and number of examples. This pa-
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per poses and answers the following question:

Given M classifiers that each produce labels randomly

for N examples, what is the highest accuracy that we

would expect some classifier to achieve?

1.1. Related Work

Our work is closely related to the multiple-testing
problem in the statistics community. In statistics, hy-
pothesis tests are the standard way to test if some
assertion is true with high probability. While a sin-
gle test has a low probability of making an error,
when multiple hypothesis tests are performed simul-
taneously, the probability of at least one of the tests
making an error can be much higher. It is common to
correct the tests by making them more conservative to
compensate.

Two of the most popular methods for correcting mul-
tiple tests are the Bonferroni Correction and the False
Discovery Rate (Benjamini & Hochberg, 1995). We
can apply these methods to the problem of feature
selection, but in practice they are often too conser-
vative at standard significance levels (e.g. 5%). See
Wong et al. (2002) and Frank and Witten (1998).
With many high-dimensional classification problems
they may simply state that no feature is significant.
This is not particularly helpful when building a classi-
fier.

We could lower the significance level so more features
are considered relevant, but it is unclear what sig-
nificance level to choose. Since different learning al-
gorithms have different tolerances to noisy, irrelevant
features, there is no single significance level that is ap-
propriate for all learning algorithms.

This fact, along with the large number of available
tests and correction methods, makes hypothesis test-
ing a difficult task for non-experts.

In our work, we approach the problem of significance
from a different angle. Using order statistics, we ex-
plicitly model small chance events in a group setting.
These techniques are relatively unknown in the ma-
chine learning literature although the multiple compar-

ison procedures described in Jensen (2000) are similar
in spirit.

We feel an order statistic approach is much more in-
tuitive than hypothesis testing, and is well suited to
problems in machine learning.

One such problem is discriminative feature selection.
This feature selection technique is often called a wrap-

per method in contrast to more recent embedded meth-
ods like the L1 regularized Lasso (Tibshirani, 1996).

While a full comparison of wrapper and embedded
methods is beyond the scope of this paper, we be-
lieve that wrapped methods will continue to play a
role in machine learning due to their simplicity and
tractability. An excellent overview of the feature se-
lection literature is available in Guyon (2003).

The work most similar to ours is by Li and
Grosse (2003), which uses extreme value distribution
theory to choose a significance threshold for selecting
relevant features. While the general theme is similar,
we do not use asymptotic results of extreme value the-
ory, nor do we use simulation to compute moments of
order statistics. By contrast, we focus on classification
problems and show exact solutions that do not require
any simulation.

2. Preliminaries

2.1. Order Statistics

We use order statistics extensively in this paper, thus
we begin with a small introduction to define some basic
concepts and notation. Consider M samples (i.i.d.)
drawn from some distribution: X1, . . . , XM ∼ FX(x).
If we order these samples from smallest to largest we
obtain:

X(1) ≤ X(2) ≤ . . . ≤ X(M)

and we use the notation X(r) to denote the rth smallest

sample which we call the rth order statistic. X(1) and
X(M) have special meaning which we call the extreme

values:

X(1) = min(X1, X2, . . . , XM )

X(M) = max(X1, X2, . . . , XM )

Each order statistic X(r) is also a random variable and
can be described by a cumulative distribution func-
tion F(r)(x) or a density function f(r)(x). We will re-
fer to an order statistic’s parent distribution, which is
the original distribution from which the M unordered
samples were drawn. In our example this is FX(x).

We will use the notation µr:M to denote the mean of
the rth order statistic for M samples drawn from the
parent distribution.

3. Expected Chance Accuracies

Using order statistics we can now answer the question
we posed earlier:

Given M classifiers that each produce labels randomly

for N examples, what is the highest accuracy that we

would expect some classifier to achieve?
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To answer this question, first consider a classifier that
labels some collection of examples at random. If the
classifier labels an example incorrectly with probabil-
ity perr, we can model the number of errors the clas-
sifier makes as a binomial random variable. Formally,
let X be defined as the number of errors the classifier
makes on some true labeling of N examples. Then:

X ∼ Binomial(N, perr)

and the mean and variance of X are:

E [X] = N · perr

V [X] = N · perr · (1 − perr)

Now, suppose instead we have M independent classi-
fiers where each produces a set of N labels at random.
Once again, the probability that each classifier makes
a mistake on a single example is perr. Let Xi be the
number of errors made by the ith classifier. We then
have:

X1, X2, . . . , XM ∼ Binomial(N, perr)

One of these classifiers will have the minimal number
of errors. Using our order statistic notation we have:

X(1) = min(X1, X2, . . . , XM )

and the expected minimum number of errors is:

µ1:M = E [X(1)]

If we knew the density function of X(1) for M samples
from a Binomial(N, perr) we could compute the mean
µ1:M directly:

µ1:M =

∞
∑

x=0

xf(1)(x)

If the parent distribution were a continuous variable,
obtaining f(1) would not be difficult and many refer-
ences show simple methods to compute the density for
any order statistic of a continuous distribution (Casella
& Berger, 2002). Since our parent distribution is the
discrete binomial, computing f(1) and more impor-
tantly µ1:M is more difficult.

We could resort to simulation to find the mean, but
this can be quite time consuming for large collections
of variables. We will show later, however, that an exact
solution does exist.

3.1. The Multiplicity Gap

For any problem with M classifiers and N examples
there is a risk that some classifier will perform well by
random chance.What is a good measure of this risk?

As we showed earlier, E [X(1)] is the minimum number
of errors that we should expect some classifier to make.
We also know that E [X] is the expected number of
errors an individual classifier will make.

Thus, one natural measure of this risk is the difference
between these two values. We define the multiplicity

gap GM,N for M classifiers and N examples as:

GM,N = E [X] − E [X(1)]

Reducing the number of examples N or increasing the
number of classifiers M increases the risk.

4. Derivation

Theorem 4.1. Highest Chance Accuracy

Consider a classification problem with M classifiers

and N examples. If the probability that a classifier

makes a mistake on a single example is perr, the high-

est expected accuracy AH of any classifier is given by:

E [AH ] = 1 −
1

N

N−1
∑

i=0

Iperr
(i + 1, N − i)M (1)

where Ip(a, b) is the incomplete beta function1:

Ip(a, b) =
1

β(a, b)

∫ p

0

ta−1(1 − t)b−1dt

Proof. Let Xi, (1 ≤ i ≤ M) be the total number of
errors classifier i makes on some true labeling of N
examples. If the probability that a classifier makes a
mistake on a single example is perr, then:

X1, X2, . . . , XM ∼ Binomial(N, perr)

Therefore, the expected minimum number of errors is:

µ1:M = E [X(1)]

To compute the value of µ1:M we utilize a useful result
from Feller (1957) that relates the mean of a discrete
random variable to its distribution function:

µX =

∞
∑

i=0

[1 − FX(i)]

therefore

µ1:M =

∞
∑

i=0

[1 − F(1)(i)]

1Some texts refer to this form as the regularized incom-
plete beta function.
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A result from David and Nagaraja (2003) shows that
is equivalent to:

µ1:M =

∞
∑

i=0

[1 − FX(i)]M (2)

Now, for a Binomial(N, perr), FX(i) = 1 when i ≥ N .
Therefore, the upper limit of the sum becomes N − 1:

µ1:M =

N−1
∑

i=0

[1 − FX(i)]M

Note that the incomplete beta function Ip(a, b) has an
expansion that looks similar to the distribution func-
tion of a binomial:

Ip(a, b) =

a+b−1
∑

j=a

(a + b − 1)!

j!(a + b − 1 − j)!
pj(1 − p)a+b−1−j

Using this expansion and a few algebraic manipula-
tions we can express the tail of the distribution func-
tion in terms of the incomplete beta function2:

1 − FX(i) = P (X ≥ i + 1)

=
N

∑

j=i+1

N !

j!(N − j)!
(perr)

j(1 − perr)
N−j

= Iperr
(i + 1, N − i)

Substituting this form into (2) we have:

µ1:M =

N−1
∑

i=0

Iperr
(i + 1, N − i)M

To put our answer in terms of accuracy rather than
errors we rearrange:

1

N
(N − µ1:M ) = 1 −

1

N
µ1:M

= 1 −
1

N

N−1
∑

i=0

Iperr
(i + 1, N − i)M

Note that this theorem depends on the number of
classes only through perr. It does not require any mod-
ification to adapt to many classes.

2We feel it is numerically advantageous to use the in-
complete beta function rather than computing the bino-
mial CDF directly. Many numerical computing environ-
ments have fast implementations of the incomplete beta
function Ip(a, b). For example, the betainc(p,a,b) com-
mand in MATLAB can implement Equation 1 in one line
of code.
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Figure 1. The highest expected chance accuracy as a func-
tion of the number of examples and classifiers. Each line
represents a different number of examples. The x-axis is
the number of classifiers and the y-axis is the accuracy.

Example 4.1 Predicting NFL games
Consider an office football pool with 200 participants

betting on the outcome of 20 games. If each partici-

pant selects the outcome of a game according to a fair

coin flip, how well would we expect the “winner” to

perform?

To answer this question, we apply Equation 1 where
M = 200, N = 20, and perr = 0.5. In this case, the
highest expected accuracy of some participant is 80%.

Although the chance probability of obtaining a per-

fect labeling is extremely small, in this case only
1/220 = 1/1, 048, 576, the chance of obtaining a very

good labeling is much higher. Exactly 1,048,576 partic-
ipants would be needed for us to expect one to obtain
a perfect labeling. Yet, with only 200 participants, the
expected accuracy of the top performer is 80%.

This effect can be seen by plotting Equation 1 for a
two class problem where perr = 0.5 (see Figure 1).
The graph shows the highest expected chance accu-
racy (y-axis) for a given number of classifiers (x-axis).
Each line represents a different number of examples N .
As we increase the number of examples, the multiplic-

ity gap closes, and highest expected chance accuracy
for some classifier approaches the expected chance ac-
curacy for a single classifier.

With small numbers of examples and large numbers of

classifiers, the chance of obtaining a very good labeling

may be very high, even if the chance of obtaining a

perfect labeling is very low.
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5. Case Study: Discriminative Feature

Selection in Sparse,

High-Dimensional Problems

A simple and popular method for finding relevant fea-
tures in a classification task is discriminative feature
selection. This method evaluates how well individual
features discriminate between different classes and se-
lects features with high predictive accuracy.

For example, if we have M features in a classification
task, we train M distinct classifiers, where each clas-
sifier is trained using a single feature. After training,
we evaluate all the classifiers on a set of validation

examples and select the top performing features ac-
cording to some criterion. A final classifier is then
trained using only these top performing features, and
then evaluated on some set of test examples.

This method is popular because it is simple to imple-
ment and often performs well in practice. The main
difficulty is: What are appropriate criteria for select-

ing significant features?

One approach is to run a cross-validation loop, test-
ing different significance thresholds to find one that
has high empirical performance. This loop is compu-
tationally expensive and also requires additional vali-
dation examples. To avoid these difficulties in practice,
it is common to choose some arbitrary threshold, and
hope that performance is sufficient for the classifica-
tion task.

Besides being pedantically unsatisfying, choosing an
arbitrary threshold in a high-dimensional problem
with a small number of examples is very risky. For
example, a simple threshold might choose all features
that perform better than 80% accuracy. As we showed
earlier, many features may exceed this seemingly high
threshold purely by random chance.

In high-dimensional problems with small numbers of

examples, the accuracy required for statistical signifi-

cance is often much higher than intuition might sug-

gest.

A more principled approach for determining signifi-
cance is to use a hypothesis test. With a hypothe-
sis test, one tries to disprove a certain assertion. For
example, one might assume that a classifier performs
with a true accuracy of 50%. This assumption is called
the null hypothesis. The goal then is to reject the null
hypothesis if the evidence (e.g. the discriminative ac-
curacy) is sufficiently strong.

Hypothesis testing has a vast literature in the statis-
tics community. A good introduction can be found

in Wasserman (2005). The Wald, “t”, binomial, per-
mutation, and χ2 tests are just a few of the possible
testing methods available. It is difficult, however, for a
non-expert to know when to apply a particular test. To
complicate matters, adjustments must be made when
multiple tests are considered simultaneously. This is
known in the statistics community as the multiple test-

ing problem. Several methods such as the Bonferroni
correction, family-wise error rate, and the false discov-
ery rate (FDR) are used to compensate for multiple
tests (Benjamini & Hochberg, 1995).

For the problem of discriminative feature selection, the
use of a binomial test along with a false discovery rate
adjustment is an appropriate choice. As we mentioned
earlier, however, hypothesis tests require the choice of
a significance level α. As is common in the scientific
literature, the level α = 0.05 is typically considered
statistically significant.

For the purpose of feature selection, however, an ap-
propriate choice of α is highly dependent on the classi-
fication algorithm used. Some classifiers are more tol-
erant to irrelevant features than others. Thus, there
is no single α value appropriate for all classifiers. We
could use a cross-validation loop to search for an ap-
propriate α, but then we could have avoided the hy-
pothesis test altogether and searched empirically for
an appropriate threshold.

5.1. The Multiplicity Gap Midpoint (MGM)
Method

Earlier in Equation 1 we derived the highest expected
chance accuracy of some classifier assuming all classi-
fiers choose their labels according to random chance.
In some sense, this accuracy is a natural significance

threshold, since we would not expect any classifer to
perform better than this threshold by random chance.

While this may seem like an intuitive threshold for
feature selection, in practice the threshold is overly
conservative for several reasons. First, this threshold
assumes all features are independent. This rarely holds
in practice, and in many high-dimensional datasets it
is very common to see strong correlations between fea-
tures.

Further, the threshold assumes that all features are
irrelevant and produce labels at random. In practice,
some subset of the features will actually be significant,
thereby lowering the effective number of random fea-
tures. There is also no guarantee that errors for a fea-
ture can be modeled as a binomial random variable.

These violations of independence and irrelevance ef-
fectively lower the highest expected chance accuracy
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(and increase the expected minimum number of er-
rors). While this threshold may be overly conservative,
it effectively serves as an upper bound on the highest
expected chance accuracy.

At the other extreme, we might consider any fea-
ture significant that performs better than the expected
chance accuracy of a single feature. As we showed be-
fore, this will clearly allow many irrelevant features
to be considered significant. Note that these two ex-
tremes are the endpoints of the multiplicity gap that
we defined earlier. If we model the number of errors
made by a classifier as a binomial random variable,
and we have M classifiers and N examples then the
multiplicity gap GM,N = E [X] − E [X(1)]

We conjecture that the optimal threshold should fall

within the multiplicity gap.

In practice, we can choose any threshold between these
two extremes. If we believe that our classifier is sensi-
tive to irrelevant features, we should choose a thresh-
old closer to E [X(1)]. Similarly, if our classifier is ro-
bust to irrelevant features, we should choose a thresh-
old closer to E [X].

Without any knowledge of the particular classifier it is
impossible to know what the optimal threshold should
be. Therefore, as a simple heuristic we propose the
multiplicity gap midpoint method, which chooses the
midpoint of the extremes of the multiplicity gap. This
yields a threshold τMGM on the maximum number of
errors a classifier could make and still be considered
significant:

τMGM =

(

E [X] + E [X(1)]
)

2

where E [X(1)] is computed as in Equation 1:

E [X(1)] = µ1:M =
N−1
∑

i=0

Iperr
(i + 1, N − i)M

and E [X] is the number of examples N multiplied by
the probability perr that a classifier makes an error on
a particular example: E [X] = N · perr

To use this threshold, we perform a discriminative fea-
ture selection and select all features that make less
than τMGM errors on a validation set with N exam-
ples.

5.2. Experimental Methodology

We perform discriminative feature selection exper-
iments on two high-dimensional classification tasks
that have few relevant features and limited training
data:
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Figure 2. Accuracies for different feature selection methods
for two classification tasks: Cancer (left) fMRI (right). The
False Discovery Rate (FDR) method selected no features
in the fMRI task.

Task 1: Cognitive state classification us-
ing functional magnetic resonance imaging
(fMRI) In this task, we are given a time series of
neural activity from thirteen human subjects. Each
feature is the neuro-activation of a particular region
of the brain at a given time. The goal is to distinguish
between two cognitive states: reading a sentence, and
viewing a picture (Mitchell et al., 2004). Each subject
has ≈80,000 features and 40 examples.

Task 2: Colon cancer patient classification us-
ing microarray gene expression levels (Cancer)
In this task, the goal is to predict whether a patient is
diagnosed with colon cancer. The data are microarray
gene expression levels from tissue samples (Alon et al.,
1999). There are 2,000 features and 62 examples.

Testing Method In each experiment, we use a Gaus-
sian Naive Bayes classifier and perform a leave-one-
out-cross-validation. On each round, we leave out one
example, and split the remaining examples into equal
training and validation sets. We train using the first
set, and measure classification accuracy on the vali-
dation set. We select the best performing features ac-
cording to a specific criterion. After selecting features,
we retrain by combining the validation and training
sets. We then test the left out example. We repeat
the process for each example.

We tested five different feature selection criteria:

1. No feature selection Uses all features.
2. Highest Expected Chance Accuracy Selects

features that make fewer than E [X(1)] mistakes.
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3. Binomial Hypothesis Test with False Dis-
covery Rate correction We select a feature if
we reject the hypothesis that a classifier’s true ac-
curacy, trained on that feature, is 50%.3 We use
an α = 5% level in the tests.

4. Multiplicity Gap Midpoint (MGM)
method The method proposed in Section 5.1.

5. Oracle Threshold This is the threshold that
would have led to the optimal testing accuracy.

5.3. Results and Discussion

In Figure 2, we see the classification results of five
discriminative feature selection methods for both the
colon cancer and fMRI datasets (for the fMRI dataset,
we averaged the results of the 13 subjects together).

In both datasets, the threshold E [X(1)] yields an im-
provement over no feature selection. But the assump-
tions made in calculating that threshold, namely that
all features are independent and irrelevant, result in a
very conservative threshold which admits few features.

The multiplicity gap midpoint (MGM) method relaxes
these assumptions and performs significantly better.
This method comes closest to the accuracy that could
have been achieved had an oracle told us the optimal
threshold to use4.

As a state-of-the-art baseline, we tried a binomial hy-
pothesis test with a false discovery rate correction. As
is common in the statistical and scientific literature,
we chose a significance level α = 0.05. This method
completely failed to select any features for the fMRI
task, indicating that it is overly conservative for very
high-dimensional problems. The method performed
fairly well on the colon cancer dataset, but did so af-
ter selecting fewer than ten features.

It is worth noting that we could tune the α value of
the false discovery rate test to admit more features
and help performance. But the goal of the midpoint
heuristic is to avoid this tuning (in fact, if we were
to do tuning, it would make more sense to just tune
the threshold for selecting features directly). Thus we
feel the midpoint method provides a more appropriate
default threshold than a specific value of α would in a
classical test.

We chose the Gaussian Naive Bayes classifier because
it is extremely fast to train and test making it very
appropriate for use in a wrapped feature selector. This

3This is appropriate since both datasets have nearly
equal class priors.

4The oracle is determined by calculating the highest
accuracy on a test set for every possible “number of errors”
threshold on the validation set.

classifier is also robust to noise but is not entirely im-
mune to overfitting. We found that adding additional
features increased performance up to a point, but even-
tually noisy features overwhelmed the classifier, and
performance degraded.

Figure 3 shows this effect for three fMRI subjects and
the colon cancer dataset. The curves shows test accu-
racies at various feature selection thresholds. In each
plot, the x-axis is the number of errors allowed, and
the y-axis is the test accuracy of the resulting clas-
sifier. We mark the extremes of the multiplicity gap
E [X(1)] and E[X] on each plot. On all thirteen sub-
jects as well as the colon cancer dataset, the optimal
(oracle chosen) threshold falls within this gap.

5.4. Future Work

The goal of this paper was to show how order statistics
can be a useful tool for problems in machine learning.
While our initial work focused on accuracy, we feel
similar techniques can be applied to other measures
such as information gain, entropy, and AUC.

Also, in our initial analysis we compute a significance
threshold assuming that all features are independent.
One natural extension of this work is to develop a
method that adjusts for correlations between features.

6. Conclusion

We provided a theoretical analysis of the chance accu-
racy of large collections of classifiers. We showed that
on problems with small numbers of examples and large
numbers of features, we should expect some classifier
to be highly accurate by random chance. We derived
a theorem to directly calculate this accuracy.

We used this theorem to provide a principled feature
selection criterion for sparse, high-dimensional prob-
lems. This criterion is theoretically well-motivated,
simple to implement, and computationally inexpen-
sive.

We demonstrated this method on microarray and
fMRI datasets and showed that this method per-
forms very close to the optimal oracle accuracy. We
also showed that on the fMRI dataset this technique
chooses relevant features while another state-of-the-art
method, the False Discovery Rate (FDR), completely
fails at standard significance levels.
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