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Abstract

The need to meaningfully combine sets of
rankings often comes up when one deals with
ranked data. Although a number of heuris-
tic and supervised learning approaches to
rank aggregation exist, they require domain
knowledge or supervised ranked data, both
of which are expensive to acquire. In or-
der to address these limitations, we propose a
mathematical and algorithmic framework for
learning to aggregate (partial) rankings with-
out supervision. We instantiate the frame-
work for the cases of combining permuta-
tions and combining top-k lists, and propose
a novel metric for the latter. Experiments in
both scenarios demonstrate the effectiveness
of the proposed formalism.

1. Introduction

Consider the scenario where each member of a panel
of judges independently generates a (partial) ranking
over a set of items while attempting to reproduce a
true underlying ranking according to their level of ex-
pertise. This setting motivates a fundamental machine
learning and information retrieval (IR) problem - the
necessity to meaningfully aggregate preference rank-
ings into a joint ranking. The IR community refers to
this as data fusion, where a joint ranking is derived
from the outputs of multiple retrieval systems. For
example, in meta-search the aim is to aggregate Web
search query results from several engines into a more
accurate ranking. In many natural language process-
ing applications, such as machine translation, there
has been an increased interest in combining the results
of multiple systems built on different principles in an
effort to improve performance (Rosti et al., 2007).
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One impediment to solving rank aggregation tasks is
the high cost associated with acquiring full or partial
preference information, making supervised approaches
of limited utility. For data fusion, efforts to over-
come this difficulty include applying domain specific
heuristics (Shaw & Fox, 1994) or collecting such pref-
erence information indirectly (e.g. using clickthrough
data (Joachims, 2002)). In order to address this lim-
itation, we propose a general unsupervised learning
framework for (partial) rank aggregation.

Analyzing ranked data is an extensively studied prob-
lem in statistics, information retrieval, and machine
learning literature. (Mallows, 1957) introduced a
distance-based model for fully ranked data and inves-
tigated its use with Kendall’s and Spearman’s met-
rics. The model was later generalized to other dis-
tance functions and for use with partially ranked
data (Critchlow, 1985). (Lebanon & Lafferty, 2002)
proposed a multi-parameter extension, where multi-
ple modal rankings (e.g. expert opinions) are avail-
able and use their formalism for supervised ensemble
learning; they also analyzed their model for partially
ranked data (Lebanon & Lafferty, 2003).

The first key contribution of our work is the derivation
of an EM-based algorithm for learning the parameters
of the extended Mallows model without supervision.
We instantiate the model with appropriate distance
functions for two important scenarios: combining per-
mutations and combining top-k lists. In the context of
defining distances between rankings, various metrics
have been proposed and analyzed (Critchlow, 1985;
Estivill-Castro et al., 1993). Distances over top-k lists,
i.e. rankings over the k most preferable objects, re-
ceive particular attention in the IR community (Fagin
et al., 2003). (Fligner & Verducci, 1986) show that a
class of distance functions between full rankings, such
as Kendall’s and Cayley’s metrics, decompose into a
sum of independent components allowing for efficient
parameter estimation of the standard Mallows model.

A second key contribution of our work is the derivation
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of a novel decomposable distance function for top-k
lists. We show it to be a generalization of the Kendall
metric and demonstrate that it can be decomposed,
enabling us to estimate the parameters of the extended
Mallows model efficiently.

Among recent work, (Busse et al., 2007) propose a
method for clustering heterogeneous rank data based
on the standard Mallows model. More directly related,
many heuristics as well as a number of supervised
learning approaches (Liu et al., 2007) exist for rank
aggregation, although few learn to combine rankings
without any supervision. (Klementiev et al., 2007)
frame unsupervised rank aggregation as an optimiza-
tion problem specifically for top-k lists, which relies on
user-tuned parameters, a form of implicit supervision,
whereas we describe a general unsupervised framework
that can be instantiated to top-k lists in addition to
other settings.

The remainder of the paper is organized as follows:
section 2 formalizes distance-based ranking models
and introduces relevant notation. Section 3 derives
our EM-based algorithm for learning model parame-
ters and specifies the requirements for efficient learn-
ing and inference. Section 4 instantiates the frame-
work for two common scenarios: permutations (full
rankings) and top-k lists. Section 5 experimentally
demonstrates the model’s effectiveness in both cases.
Finally, section 6 concludes the work and gives ideas
for future directions.

2. Distance-Based Ranking Models

2.1. Notation and Definitions

Let {x1, . . . , xn} be a set of objects to be ranked, i.e.
assigned rank-positions 1, . . . , n, by a judge. We de-
note the resulting permutation π = (π(1), . . . , π(n)),
where π(i) is the rank assigned to object xi. Corre-
spondingly, we use π−1(j) to denote the index of the
object assigned to rank j.

Let Sn be the set of all n! permutations over n items,
and let d : Sn × Sn → R be a distance function be-
tween two permutations. We will require d(·, ·) to be
a right-invariant metric (Diaconis & Graham, 1977):
in addition to the usual properties of a metric, we will
also require that the value of d(·, ·) does not depend
on how the set of objects is indexed. In other words,
d(π, σ) = d(πτ, στ) ∀π, σ, τ ∈ Sn, where πτ is defined
by πτ(i) = π(τ(i)).

In particular, note that d(π, σ) = d(ππ−1, σπ−1) =
d(e, σπ−1), where e = (1, . . . , n) is the identity permu-
tation. That is, the value of d does not change if we

re-index the objects such that one of the permutations
becomes e and the other ν = σπ−1. Borrowing the no-
tation from (Fligner & Verducci, 1986) we abbreviate
d(e, ν) as D(ν). In a later section, when we define ν as
a random variable, we may treat D(ν) = D as a ran-
dom variable as well: whether it is a distance function
or a r.v. will be clear from the context.

2.2. Mallows Models

While a large body of work on ranking models ex-
ists in statistics literature, of particular interest to us
are the distance based conditional models first intro-
duced in (Mallows, 1957). Let us give a brief review of
the formalism and elucidate some of the its properties
relevant to our work. The model generates a judge’s
rankings according to:

p(π|θ, σ) =
1

Z(θ, σ)
exp(θ d(π, σ)) (1)

where Z(θ, σ) =
∑
π∈Sn

exp(θ d(π, σ)) is a normaliz-
ing constant. The parameters of the model are θ ∈ R,
θ ≤ 0 and σ ∈ Sn, referred to as the dispersion and the
location parameters, respectively. The distribution’s
single mode is the modal ranking σ; the probability of
ranking π decreases exponentially with distance from
σ. When θ = 0, the distribution is uniform, and it
becomes more concentrated at σ as θ decreases.

One property of (1) is that the normalizing constant
Z(θ, σ) does not depend on σ due to the right invari-
ance of the distance function:

Z(θ, σ) = Z(θ) (2)

Let us denote the moment generating function of D
under (1) as MD,θ(t), and as MD,0(t) under the uni-
form distribution (θ = 0). Since (1) is an exponential
family,

MD,θ(t) =
MD,0(t+ θ)
MD,0(θ)

Therefore,

Eθ(D) =
1

MD,0(θ)
dMD,0(t+ θ)

dt

∣∣∣∣
t=0

=
d ln(MD,0(t))

dt

∣∣∣∣
t=θ

(3)

(Fligner & Verducci, 1986) note that if a distance func-
tion can be expressed as D(π) =

∑m
i=1 Vi(π), where
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Vi(π) are independent (with π uniformly distributed)
with m.-g.f. Mi(t), then MD,0(t) =

∏m
i=1Mi(t). Con-

sequently, (3) gives:

Eθ(D) =
d

dt

m∑
i=1

lnMi(t)

∣∣∣∣∣
t=θ

(4)

We will call such distance functions decomposable and
will later use (4) in section 4 in order to estimate θ
efficiently.

2.3. Extended Mallows Models

(Lebanon & Lafferty, 2002) propose a natural gener-
alization of the Mallows model to the following condi-
tional model:

p(π|θ,σ) =
1

Z(θ,σ)
p(π) exp

(
K∑
i=1

θi d(π, σi)

)
(5)

where σ = (σ1, . . . , σK) ∈ SKn , θ = (θ1, . . . , θK) ∈
RK , θ ≤ 0, p(π) is a prior, and normalizing constant
Z(θ,σ) =

∑
π∈Sn

p(π) exp(
∑K
i=1 θi d(π, σi)).

The rankings σi may be thought of as votes of K
individual judges, e.g. rankings returned by multi-
ple search engines for a particular query in the meta-
search setting. The free parameters θi represent the
degree of expertise of the individual judges: the closer
the value of θi to zero, the less the vote of the i-th
judge affects the assignment of probability.

Under the right-invariance assumption on d, we can
use property (2) to derive the following generative
story underlying the extended Mallows model:

p(π,σ|θ) = p(π)
K∏
i=1

p(σi|θi, π) (6)

That is, π is first drawn from prior p(π). σ is then
made up by drawing σ1 . . . σK independently from K
Mallows models p(σi|θi, π) with the same location pa-
rameter π.

It is straightforward to generalize both Mallows models
(Critchlow, 1985), and the extended Mallows models
to partial rankings by constructing appropriate dis-
tance functions. We will assume this more general
setting in the following section.

3. Learning and Inference

In this section, we derive the general formulation of
Expectation Maximization algorithm for parameter es-
timation of the extended Mallows models (5), and sug-
gest a class of distance functions for which learning can
be done efficiently. We then describe an inference pro-
cedure for the model.

3.1. EM Background and Notation

Let us start with a brief overview of Expectation-
Maximization (Dempster et al., 1977) mostly to in-
troduce some notation. EM is a general method of
finding maximum likelihood estimate of parameters of
models which depend on unobserved variables. The
EM procedure iterates between:

E step: estimate the expected value of complete data
log-likelihood with respect to unknown data Y, ob-
served data X , and current parameter estimates θ′:

T (θ, θ′) = E[log p(X ,Y|θ)|X , θ′]

M step: choose parameters that maximize the expec-
tation computed in the E step:

θ′ ← argmax
θ

T (θ, θ′)

In our setting, the K > 2 experts generate votes σ
corresponding to the unobserved true ranking π. We
will see multiple instances of σ so the observed data we
get are ranking vectors X = {σ(j)}Qj=1 with the corre-
sponding true (unobserved) rankings Y = {π(j)}Qj=1.

In the meta-search example, σ(j)
i is the ranking of the

i-th (of the total of K) search engine for the j-th (of
the total of Q) query. The (unknown) true ranking
corresponding to the j-th query is denoted as π(j).

3.2. EM Derivation

We now use the generative story (6) to derive the fol-
lowing propositions (proofs omitted due to space con-
straints):

Proposition 1. The expected value of the complete
data log-likelihood under (5) is:

T (θ,θ′) =
∑

(π(1),...,π(Q))∈SQ
n

Lθ Uθ′ (7)
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where the complete data log-likelihood Lθ is:

Lθ =
Q∑
j=1

log p(π(j))−

Q

K∑
i=1

logZ(θi) +
Q∑
j=1

K∑
i=1

θi d(π(j), σ
(j)
i )

and the marginal distribution of the unobserved data
Uθ′ is:

Uθ′ =
Q∏
j=1

p
(
π(j)|θ′,σ(j)

)
Proposition 2. T (θ,θ′) is maximized by θ =
(θ1, . . . , θK) such that:

Eθi(D) =
∑

(π(1),...,π(Q))

∈SQ
n

(
1
Q

Q∑
q=1

d(π(q), σ
(q)
i )

)
Uθ′ (8)

That is, on each iteration of EM, we need to evaluate
the right-hand side (RHS) of (8) and solve the LHS
for θi for each of the K components.

3.3. Model Learning and Inference

At first, both evaluating the RHS of (8) and solving
the LHS for θi seem quite expensive (> n!). While
true in general, we can make the learning tractable for
a certain type of distance functions.

In particular, if a distance function can be decomposed
into a sum of independent components under the uni-
form distribution of π (see section 2.2), property (4)
may enable us to make the estimation of the LHS ef-
ficient. In Section 4, we show two examples of such
distance functions (for permutations and top-k lists).

In order to estimate the RHS, we use the Metropo-
lis algorithm (Hastings, 1970) to sample from (5).
The chain proceeds as follows: denoting the most
recent value sampled as πt, two indices i, j ∈
{1, . . . , n} are chosen at random and the objects
π−1
t (i) and π−1

t (j) are transposed forming π′t. If
a = p(π′t|θ,σ)/p(πt|θ,σ) ≥ 1 the chain moves to π′t.
If a < 1, the chain moves to π′t with probability a;
otherwise, it stays at πt. (Diaconis & Saloff-Coste,
1998) show quick convergence for Mallows model with
Cayley’s distance. While no convergence results are
known for the extended Mallows model with arbitrary
distance, we found experimentally that the MC chain
converges rapidly with the two distance functions used
in this work (10n steps in experiments of Section 5).

As the chain proceeds, we update the distance value
with the incremental change due to a single transposi-
tion, instead of recomputing it from scratch, resulting
in substantial savings in computation.

Alternatively, we also found (Section 5.1) that a combi-
nation of rankings σi weighted by exp(−θi) provides a
reasonable and quick estimate for evaluating the RHS.

Sampling or the suggested alternative RHS estimation
used during training is also used for model inference.

4. Model Application

Overcoming the remaining hurdle (the LHS estima-
tion) in learning the model efficiently depends on the
definition of a distance function. We now consider two
particular types of (partial) rankings: permutations,
and top-k lists. The latter is the case when each judge
specifies a ranking over k most preferable objects out
of n. For instance, a top-10 list may be associated
with the 10 items on the first page of results returned
by a web search engine. For both permutations and
top-k lists, we show distance functions which satisfy
the decomposability property (Section 2.2), which, in
turn, allows us to estimate the LHS of (8) efficiently.

4.1. Combining Permutations

Kendall’s tau distance (Kendall, 1938) between per-
mutations π and σ is a right-invariant metric defined
as the minimum number of pairwise adjacent transpo-
sitions needed to turn one permutation into the other.
Assuming that one of the permutations, say σ, is the
identity permutation e (we can always turn one of the
permutations into e by re-indexing the objects without
changing the value of the distance, see Section 2.1), it
can be written as:

DK(π) =
n−1∑
i=1

Vi(π)

where1 Vi(π) =
∑
j>i I(π−1(i) − π−1(j)). Vi are in-

dependent and uniform over integers [0, n− i] (Feller,
1968) with m.-g.f. Mi(t) = 1

n−i+1

∑n−i
k=0 e

tk. Following
(Fligner & Verducci, 1986), equation (4) gives:

Eθ(DK) =
neθ

1− eθ
−

n∑
j=1

jeθj

1− eθj
(9)

Eθ(DK) is monotone decreasing, so line search for θ
will converge quickly.

1I(x) = 1 if x > 0, and 0 otherwise.
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4.2. Combining Top-k Lists

We now propose an extension of the Kendall’s tau dis-
tance to top-k lists, i.e. the case where π and σ indi-
cate preferences over different (possibly, overlapping)
subsets of k ≤ n objects.

Let us denote by Fπ and Fσ the elements in π and σ
respectively, noting that |Fπ| = |Fσ| = k. We define
Z = Fπ ∩ Fσ, |Z| = z, P = Fπ \ Fσ, and S = Fσ \
Fπ (note that |P | = |S| = k − z = r). We treat π
and σ as rankings, which for us will mean that the
smallest index will indicate the top, i.e. contain the
most preferred object. For notational convenience, let
us now define the augmented ranking π̃ as π augmented
with the elements of S assigned the same index (k +
1), one past the bottom of the ranking as shown on
Figure 1 (σ̃ is defined similarly). We will slightly abuse
our notation and denote π̃−1(k + 1) to be the set of
elements in position (k + 1).

Kendall’s tau distance DK is naturally extended from
permutations to augmented rankings.

Definition 1. Distance D̃K(π̃, σ̃) between augmented
rankings π̃ and σ̃ is the minimum number of adjacent
transpositions needed to turn π̃ into σ̃.

It can be shown that D̃K(π̃, σ̃) is a right-invariant met-
ric, thus we will again simplify the notation denoting
it as D̃K(π̃). This distance can be decomposed as:

D̃K(π̃) =
k∑
i=1

π̃−1(i)∈Z

Ṽi(π̃) +
k∑
i=1

π̃−1(i)/∈Z

Ũi(π̃) +
r(r + 1)

2

where

Ṽi(π̃) =
k∑
j=i

π̃−1(j)∈Z

I(π̃−1(i)− π̃−1(j)) +

∑
j∈π̃−1(k+1)

I(π̃−1(i)− j)

Ũi(π̃) =
k∑
j=i

π̃−1(j)∈Z

1

Decomposing D̃K(π̃), the second term is the minimum
number of adjacent transpositions necessary to bring
the r elements not in Z (grey boxes on Figure 1) to the
bottom of the ranking. The third term is the minimum
number of adjacent transpositions needed to switch

k−1

7

k

3

k+1

1

k+1

k+1

k

k−1

k−2

4

3

1

2

2 4 k−1k+1

k

k−1

k−2

4

3

1

2

k+1 k+1k+1

σ~π~

k−2

k

1

k+1

2

3

4

Figure 1. An example of augmented permutations π̃ (left)
and identity augmented permutation σ̃ (right, in natural
order). Grey boxes are objects in π but not in σ. D̃K(π̃)
is the minimum number of adjacent transpositions needed
to turn π̃ into σ̃: namely, bring all grey boxes into the
position k + 1 and put the remaining k objects in their
natural order.

them with the elements in π̃−1(k + 1), which would
then appear in the correct order in the bottom r po-
sitions. Finally, the first term is the adjacent transpo-
sitions necessary to put the k elements now in the list
in the natural order.

It can be shown that the random variable sum-
mands comprising D̃K(π̃) are independent when π̃
is uniformly distributed. Furthermore, Ṽi and Ũj
are uniform over integers [0, k − i] and [0, z], with
moment generating functions 1

k−i+1

∑k−i
j=0 e

tj and
1
z+1

∑z
j=0 e

tj , respectively. Assuming z > 0, and r > 0
equation (4) gives:

Eθ(D̃K) =
keθ

1− eθ
−

k∑
j=r+1

jejθ

1− ejθ
+

r(r + 1)
2

− r(z + 1)
eθ(z+1)

1− eθ(z+1)
(10)

If r = 0 (i.e. the augmented rankings are over the same
objects), both the distance and the expected value re-
duce to the Kendall distance results. Also, if z = 0 (i.e.
the augmented rankings have no objects in common),
D̃K = Eθ(D̃K) = k(k + 1)/2, which is the smallest
number of adjacent transpositions needed to move the
r = k objects in π̃−1(k + 1) into the top k positions.

Eθ(D̃K) is decreasing monotonically, so we can again
use line search to find the value of θ. Notice that the
expected value depends on the value of z (the number
of common elements between the two permutations).
We will compute the average value of z as we estimate
the RHS of (8) and use it to solve the LHS for θ.
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5. Experimental Evaluation

We demonstrate the effectiveness of our approach for
permutations and top-k lists considered in Section 4.

5.1. Permutations

We first consider the scenario of aggregating permuta-
tions. For this set of experiments, the votes of K = 10
individual experts were produced by sampling stan-
dard Mallows models (1), with the same location pa-
rameter σ∗ = e (an identity permutation over n = 30
objects), and concentration parameters θ∗1,2 = −1.0,
θ∗3,..,9 = −0.05, and θ∗10 = 0 (the latter generating all
permutations uniformly randomly). The models were
sampled 10 times, resulting in Q = 10 lists of permu-
tations (one for each “query”), which constituted the
training data.

In addition to the sampling procedure described in
Section 3.3 to estimate the RHS of (8), we also tried
the following weighted Borda count approximation.
For each “query” q, we took the K votes and mixed
them into a single permutation σ̂q as follows: a score
for each of the n objects is computed as a weighted
combination of ranks assigned to that object by indi-
vidual judges. The aggregate permutation σ̂q is ob-
tained by sorting the objects according to their re-
sulting scores. The weights are computed using the
current values of the model parameters as exp(−θi).
The rationale is that the smaller the absolute value
of θi, the lower the relative quality of the ranker, and
the less it should contribute to the aggregate vote. Fi-
nally, the RHS for the i-th component is computed as
the distance from its vote to σ̂q averaged over all Q
queries.

We also tried using the true permutation σ∗ in place
of σ̂q to see how well the learning procedure can do.

At the end of each EM iteration, we sampled the
current model (5), and computed the Kendall’s tau
distance between the generated permutation to the
true σ∗. Figure 2 shows the model performance when
sampling and the proposed approximation are used
to estimate the RHS. Although the convergence is
much faster with the approximation, the model trained
with the sampling method achieves better performance
approaching the case when the true permutation is
known.

5.2. Top-k lists

In order to estimate the model’s performance in the
top-k list combination scenario, we performed data
fusion experiments using the data from the ad-hoc re-
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Figure 2. Permutations: learning performance of the
model (averaged over 5 runs) when RHS is estimated using
sampling (Sampling), the proposed weighted Borda count
approximation (Weighted), or the true permutation (True).
Although the convergence is much faster with the approxi-
mation, model trained with the sampling method achieves
better performance.

trieval shared task of the TREC-3 conference (Har-
man, 1994). Our goal here is to examine the behav-
ior of our approach as we introduce poor judges into
the constituent ranker pool. In this shared task, 40
participants submitted top-1000 ranking over a large
document collection for each of the 50 queries. For
our experiments, we used top-100 (k = 100) rank-
ings from K = 38 of the participants (two of the par-
ticipants generated shorter rankings for some of the
queries and were not used) for all Q = 50 queries. We
replaced a specific number Kr ∈ [0,K] of the partici-
pants with random rankers (drawing permutations of k
documents from the set of documents returned by all
participants for a given query uniformly randomly).
We then used our algorithm to combine top-k lists
from Kr random rankers and (K − Kr) participants
chosen at random.

We measure performance using the precision in top-
{10, 30} documents as computed by trec eval2 from
the TREC conference series. As a baseline, we
use CombMNZrank suggested in (Klementiev et al.,
2007). It is a variant of a commonly used CombMNZ
(Shaw & Fox, 1994). Given a query q for each doc-
ument x in the collection it computes a score Nx ×∑K
i=1(k − ri(x, q)), where ri(x, q) is the rank of the

document x in the ranking returned by participant i
for the query q, and Nx is the number of participants
which place x in their top-k rankings. The aggregate

2Available at http://trec.nist.gov/
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Figure 3. Top-k lists: precision of the aggregate ranker as
a function of the number of random component rankers
Kr in top 10 and top 30 documents. Our algorithm learns
to discount the random components without supervision
substantially improving over CombMNZrank.

ranking is obtained by sorting documents according to
their scores. Intuitively, the more component rankers
rank a document highly the higher it appears in the
aggregate ranking.

Figure 3 shows that our algorithm learns to discount
the random components without supervision substan-
tially improving over the baseline as Kr → K.

We also compared our results with the ULARA algo-
rithm (Klementiev et al., 2007). These results were
not included since we found ULARA to be too sen-
sitive to user-defined parameters (an implicit form of
supervision) with results varying between competitive
with our model to comparable with CombMNZrank.

5.3. Model Dispersion Parameters

In order to demonstrate the relationship between the
learned dispersion parameters of the model, θ, and
the relative performance of the constituent rankers,
we also conducted a meta-search experiment. First,
we generated Q = 50 queries which result in an unam-
biguous most relevant document and submitted them
to K = 4 commercial search engines. For each engine,
we kept the 100 highest ranked documents (10 pages
of 10 documents each) after removing duplicates, and
unified URL formatting differences between engines.
We measure performance with Mean Reciprocal Page
Rank (MRPR), which we define as mean reciprocal
rank of the page number on which the correct docu-
ment appears.

Table 1 shows MRPR of the four search engines and

Table 1. MRPR of the four search engines and their cor-
responding model parameters; the results suggest a corre-
lation between the magnitude of the dispersion parameters
and the relative system performance.

S1 S2 S3 S4

θ -0.065 0.0 -0.066 -0.049
MRPR 0.86 0.43 0.82 0.78

their corresponding model parameters. As expected,
the results suggest a correlation between the magni-
tude of the dispersion parameters and the relative sys-
tem performance, implying that their values may also
be used for unsupervised search engine evaluation. Fi-
nally, our model achieves MRPR = 0.92 beating all
of the constituent rankers.

6. Conclusions and Future Work

We propose a formal mathematical and algorithmic
framework for aggregating (partial) rankings without
supervision. We derive an EM-based algorithm for the
extended Mallows model and show that it can be made
efficient for the right-invariant decomposable distance
functions. We instantiate the framework and experi-
mentally demonstrate its effectiveness for the impor-
tant cases of combining permutations and combining
top-k lists. In the latter case, we introduce the notion
of augmented permutation and a novel decomposable
distance function for efficient learning.

A natural extension of the current work is to instanti-
ate our framework for other types of partial rankings,
as well as to cases where ranking data is not of the
same type. The latter is of practical significance since
often preference information available is expressed dif-
ferently by different judges (e.g. top-k rankings of dif-
ferent lengths).

Another direction for future work is to extend the
rank aggregation model to accommodate position de-
pendence. In IR, more importance is generally given
to results appearing higher in the rankings. Within
our framework one may be able to design a distance
function reflecting this requirement. Additionally, the
quality of votes produced by individual components
may depend on the rank, e.g. in the top-k scenario
some rankers may be better at choosing few most rel-
evant objects, while others may tend to have more rel-
evant objects in the k selected but may not rank them
well relative to one another. This case may be mod-
eled by adding a dependency on rank to the dispersion
parameters of the model.
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In addition, this framework appears promising for a
number of applications. Besides the NLP problems
mentioned before, such as learning to combine out-
put from multiple machine translation systems, one
interesting setting may be domain adaptation. Here,
the task is to adapt a hypothesis trained with ample
labeled data from one input distribution to a second
distribution where minimal training data is available.
When the hypothesis is a trained aggregate ranker,
we expect the relative expertise of its components to
change and can use our approach to reweigh them ac-
cordingly.
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