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Abstract

The central issue in representing graph-
structured data instances in learning algo-
rithms is designing features which are invari-
ant to permuting the numbering of the ver-
tices. We present a new system of invari-
ant graph features which we call the skew
spectrum of graphs. The skew spectrum is
based on mapping the adjacency matrix of
any (weigted, directed, unlabeled) graph to a
function on the symmetric group and com-
puting bispectral invariants. The reduced
form of the skew spectrum is computable in
O(n3) time, and experiments show that on
several benchmark datasets it can outper-
form state of the art graph kernels.

1. Introduction

After real valued vectors and strings, the third most
fundamental type of data instance in machine learning
are graphs. In addition to application domains such
as bioinformatics (Sharan & Ideker, 2006), chemoin-
formatics (Bonchev & Rouvray, 1991), social networks
(Kumar et al., 2006), etc., where information is pre-
sented as a graph from the start, graphs are also used
to capture the relationships between the different parts
of segmented images in computer vision (Harchaoui
& Bach, 2007), and to capture grammatical structure
in language (Collins & Duffy, 2002). Graphs may be
directed or undirected, weighted or unweighted, and
their vertices may be labeled, partially labeled or un-
labeled. In each of these cases, the challenge is to rep-
resent graphs in a way that preserves their structure,
but is insensitive to spurious transformations, such as
changing the (arbitrary) numbering of their vertices.
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Given a graph G, the two main lines of research that
have emerged to address the above problem focus re-
spectively on (a) designing an explicit feature map-
ping G 7→ (q1, q2, . . . , qk); and (b) designing a kernel
k(G1,G2). Proponents of the first approach exploit
global invariant properties of G, such as the eigenvalues
of its graph Laplacian, or local invariant properties,
such as the number of occurrences in G of a library
of small subgraphs. In contrast, proponents of the
kernel approach use various intuitions about simulta-
neous random walks and diffusion on product graphs
(Gärtner, 2003).

The new method that we present in this paper belongs
in the first of the above two categories, but is distin-
guished from prior work (with the exception of (Shawe-
Taylor, 1993)) by its algebraic character. In this re-
gard, it is related to the recent line of papers (Kondor
et al., 2007; Huang et al., 2008; Kondor, 2007a) in-
troducing concepts from non-commutative harmonic
analysis to machine learning. The mathematical foun-
dations of our work are Kakarala’s seminal results on
the bispectra of functions on compact groups (Kakar-
ala, 1993; Kakarala, 1992), and the recent discovery
of a unitarily equivalent, but computationally more
attractive set of invariants called the skew spectrum
(Kondor, 2007b). We show how these general theories
can be harnessed to construct graph invariants, and
examine in detail their computational properties.

Experiments on standard datasets of chemical com-
pounds show that the skew spectrum of graphs is com-
petitive with the state of the art in graph features, and
in some cases outperforms all other methods. A ma-
jor advantage of the skew spectrum is that since it
is an explicit feature mapping, it can be applied as a
preprocessing step, and hence scales linearly with the
number of examples. The computational complexity
of computing the (reduced) skew spectrum of a single
graph of n nodes scales with n3. Uniquely amongst the
graph invariants used in machine learning, the skew
spectrum has a fixed number of scalar components (85
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for the complete skew spectrum and 49 for its reduced
version), resulting in a very compact representation.
This does not stop the skew spectrum form remaining
competitive both in speed and representational accu-
racy up to about n = 300.

For those technical details of the skew spectrum which
could not be squeezed into this conference paper we
refer the reader to the accompanying report (Kondor,
2008).

2. Graph Invariants

In this paper G will be a directed weighted graph of n
vertices. We represent G by its adjacency matrix A ∈
R

n×n, where [A]i,j ∈ R is the weight of the edge from
vertex i to vertex j. Unweighted graphs are special
cases satisfying [A]i,j ∈ {0, 1}, while undirected graphs
are special cases satisfying A⊤ = A. We assume that
A has no self-loops, i.e., [A]i,i = 0 for i = 1, 2, . . . , n.

Recall that a permutation of n objects is a bijec-
tive map π : {1, 2, . . . , n} → {1, 2, . . . , n}. Permuting
the labels on the vertices of G by π results in a new
adjacency matrix Aπ with entries

[Aπ]π(i),π(j) = [A]i,j , (1)

but A and Aπ both represent the same graph G. A
function q(A) is called a graph invariant if it is in-
variant to relabelings of this kind, i.e., if q(A) = q(Aπ)
for any permutation π. Our objective is to construct a
system (q1, q2, . . . , qk) of graph invariants which cap-
ture as much information about G as possible, yet can
be computed economically.

2.1. Reduction to Left-translation Invariance

Our approach is based on the fact that permutations
form a group. This means that if for a pair of permu-
tations σ1 and σ2, we define their product σ3 = σ2σ1

by composition of maps, i.e., σ3(i) = σ2(σ1(i)), then
the following axioms are satisfied:

1. for any two permutations σ1 and σ2, the product
σ2σ1 is also a permutation;

2. for any three permutations σ1, σ2 and σ3,
σ1(σ2σ3) = (σ1σ2)σ3;

3. The identity e(i) = i is a permutation;

4. For any permutation σ, there is an inverse permu-
tation σ−1 satisfying σσ−1 = σ−1σ = e.

The group of permutations of n objects is called the
symmetric group over n letters and is denoted Sn.

To find graph invariants we begin by mapping A to a
function f : Sn → R, defined as

f(σ) = Aσ(n),σ(n−1). (2)

Note that this is a very special type of function on Sn

in that it is constant on each block of permutations

Si,j = { σ ∈ Sn | σ(n) = i, σ(n − 1) = j } . (3)

For k < n, identifying Sk with the subgroup of per-
mutations permuting 1, 2, . . . , k amongst themselves
and leaving k + 1, . . . , n fixed, the above blocks, of
which there are n(n − 1) in total, each have the form
σ Sn−2 = { στ | τ ∈ Sn−2 }, and are called left Sn−2–
cosets.

Defining f as in (2) ensures that under relabeling it
transforms in a transparent fashion. Specifically, if f ′

is the function corresponding to Aπ, then

f ′(πσ) = Aπ
(πσ)(n),(πσ)(n−1) = Aσ(n),σ(n−1) = f(σ).

(4)
In general, a function g : Sn → R related to f by
g(σ) = f(π−1σ) is called the left-translate of f by π,
and is denoted fπ. Equation 4 tells us that f ′ = fπ,
reducing the problem of constructing graph invariants
to finding left-translation invariant features of func-
tions on Sn.

2.2. Invariant Matrices

Now consider the weighted sum of matrices

f̂ρ =
∑

σ∈Sn

f(σ) ρ(σ), (5)

where ρ(σ) is a system of complex valued matrices
satisfying

ρ(σ2 σ1) = ρ(σ2) ρ(σ1) σ1, σ2 ∈ Sn,

as well as the unitarity condition ρ(σ−1) = (ρ(σ))−1 =
ρ(σ)†. Such systems of matrices are called unitary

matrix representations of Sn. Changing variables
from σ to σ′ = π−1σ shows that

f̂π
ρ =

∑

σ∈Sn

f(π−1σ) ρ(σ) =
∑

σ′∈Sn

f(σ′) ρ(πσ′)

=
∑

σ′∈Sn

f(σ′) ρ(π) ρ(σ′) = ρ(π) f̂ρ,

which suggests that (5) is a good starting point for
constructing left-translation invariants of f . For ex-
ample, the matrix âρ = f̂†

ρ · f̂ρ is invariant because

âπ
ρ = f̂π

ρ
† · f̂π

ρ = (ρ(π)f̂ρ)
†(ρ(π)f̂ρ) =

f̂†
ρ ρ(π)† ρ̂(π) f̂ρ = f̂†

ρ · f̂ρ = âρ. (6)

The question we face is how to construct such invari-
ants in a systematic way with minimum redundancy,
yet maximum representational power.
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3. Irreps and the Fourier Transform

It is easy to see that if ρ1 : Sn → C
d×d is a unitary rep-

resentation of Sn, and T is any d × d unitary matrix,
then ρ2(σ) = T ρ1(σ)T † is also a unitary represen-
tation. Such pairs of representations are said to be
equivalent. Once we have computed (5) with ρ = ρ1,
computing it again with ρ = ρ2 will not lead to addi-
tional invariants, since f̂ρ2

= T f̂ρ1
T †.

Another potential source of redundancy is reducibility.
A representation ρ is said to be reducible if for some
unitary T it splits in the form

ρ(σ) = T

(
ρ1(σ)

ρ2(σ)

)
T † σ ∈ Sn

into a direct sum of smaller representations ρ1 and ρ2.
Once again, f̂ρ does not supply any information on top

of f̂ρ1
and f̂ρ2

because f̂ρ = T (f̂ρ1
⊕ f̂ρ2

)T †.

To avoid these redundancies we will use a complete
set of inequivalent irreducible unitary representations
(irreps for short). Such a set we denote by R. The
corresponding set of matrices

f̂ρ =
∑

σ∈Sn

f(σ) ρ(σ), ρ ∈ R, (7)

is called the Fourier transform of f , and it pro-
vides the basis for generalizing harmonic analysis
to non-commutative groups (Diaconis, 1988; Rock-
more, 1997). Just as the classical Fourier trans-

forms, F : f → (f̂ρ)ρ∈R satisfies a generalized form
of the translation and convolution theorems. What
is most crucial for our present purposes, however, is
that (given the appropriate inner products) F is uni-
tary, and therefore one–to–one: hence, no information
is lost in going from f to the set of matrices (f̂ρ)ρ∈R.

Several different systems of irreps for Sn are described
in the literature (James & Kerber, 1981). In the in-
terests of saving space, we only describe their general
scheme, without going into the details of how to com-
pute the actual representation matrices. In all the ma-
jor representation schemes the individual irreps ρ ∈ R
are indexed by Young diagrams, which are n boxes
arranged in consecutive left-aligned rows satisfying the
condition that no row overhangs the row above it. For
example,

(8)

is a valid Young diagram for n = 8. We will use the
letter λ to refer to Young diagrams and write λ ⊢ n
to denote that λ is a Young diagram with n boxes.
To simplify notation somewhat we write f̂λ for f̂ρλ

.

λ dλ

(n) 1

(n − 1, 1) n − 1

(n − 2, 2) n(n−3)
2

(n − 2, 1, 1) (n−1)(n−2)
2

(n − 3, 3) n(n−1)(n−5)
6

(n − 3, 2, 1) n(n−2)(n−4)
3

Table 1. The dimensionalities of some representations of
Sn. The diagrams are drawn as if n = 8, but the formulae
hold for general n.

Young diagrams can also be described by listing the
number of boxes in each row, for example, the above
diagram is λ = (5, 2, 1). For concreteness, when we
need to draw Young diagrams we will always depict
them as if n = 8.

Bijectively filling the boxes of a Young diagram with
the numbers 1, 2, . . . , n gives a Young tableau, and
if a tableau satisfies the condition that in each row
the numbers increase from left to right and in each
column they increase from top to bottom it is called a
standard tableau. For example,

1 3 4 5 8

2 6

7

is a standard tableau of shape (5, 2, 1). The signifi-
cance of standard tableaux is that they label the in-
dividual dimensions of the irrep of the same shape.
Hence, we can find the dimensionality of ρλ by count-
ing the number of possible standard tableaux of shape
λ (Figure 1). An interesting special property of the
symmetric group is that all the irreps can be chosen
to be real valued. For generality, we retain the com-
plex notation, but note that the actual system of irreps
used in our experiments is real, so we could substitute
“orthogonal” for “unitary” and ⊤ for † throughout.

4. The Bispectrum and the Skew

Spectrum

Armed with the irreps and non-commutative Fourier
transforms, we can now undertake a more systematic
study of left-translation invariant features of functions
on the symmetric group. For example, (6) leads to the
set of invariant matrices

âλ = f̂†
λ · f̂λ, λ ⊢ n,

which, by analogy with the analogous quantity in clas-
sical signal processing, is called the power spectrum
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of f . The problem with the power spectrum is that
it is very lossy. To see this, one need only con-
sider f̂ ′

λ = Mλf̂λ for any sequence of unitary matri-
ces (Mλ)λ⊢n. The functions f and f ′ corresponding
to these two Fourier transforms may be very different,
yet their power spectrum will be the same.

4.1. The Bispectrum

Kakarala realized that the lossiness of the power spec-
trum can be addressed by forming tensor products of
the various Fourier components, and proposed the al-
ternative system of invariant matrices

b̂λ1,λ2
= (f̂λ1

⊗ f̂λ2
)† Cλ1,λ2

[⊕

λ

f̂λ

]
λ1, λ2 ⊢ n (9)

called the bispectrum (Kakarala, 1993)1. The bis-

pectrum is based on the observation that f̂λ1
⊗ f̂λ2

transforms according to

f̂π
λ1

⊗ f̂π
λ2

= (ρλ1
(π)⊗ρλ2

(π)) · (f̂λ1
⊗ f̂λ2

),

and that ρλ1
(π)⊗ ρλ2

(π) is also a representation, al-
though in general not irreducible. The general formula

ρλ1
(σ)⊗ρλ2

(σ) = Cλ1,λ2

[⊕

λ

ρλ(σ)
]
C†

λ1,λ2
(10)

telling us how to reduce it into a direct sum of irreps
is called the Clebsch-Gordan decomposition, and the
Cλ1,λ2

unitary matrices appearing in (10) and (9) are
called Clebsch-Gordan matrices.

By plugging (10) into (9) it is easy to see that the bis-
pectrum is indeed invariant to left-translation. A much
more remarkable fact, proved in (Kakarala, 1992),
is that provided the technical condition that each
f̂λ is invertible is satisfied, the bispectrum is also
complete (or lossless) in the sense that the matrices

(̂bλ1,λ2
)λ1,λ2⊢n uniquely determine f up to translation.

4.2. The Skew Spectrum

Some of the drawbacks of using the bispectrum in
practical applications are that (a) computing (9) may
involve multiplying together very large matrices; (b)
that the Clebsch-Gordan matrices, despite being uni-
versal constants, are not generally available in tabu-
ated form; and (c) that for large n they are extremely
difficult to compute. To address these concerns, Kon-
dor (2007b) proposed an alternative set of invariants,
called the skew spectrum, which are unitarily equiv-
alent to the bispectrum, but much more straightfor-
ward to compute. The skew spectrum of f : Sn → C

1The exact definition of the bispectrum varies somewhat
between authors. However, the various definitions are all
unitarily equivalent to each other.

is defined as the collection of matrices

q̂ν,λ = r̂†ν,λ · f̂λ, λ ⊢ n, ν ∈ Sn, (11)

where (r̂ν,λ)λ⊢n is the Fourier transform of the function
rν(σ) = f(σν) f(σ). In (Kondor, 2007b) it is shown
that if for some subgroup H, f is constant on left σH-
cosets (as the function defined in (2) is constant on left
Sn−2-cosets), then it is sufficient to let ν take on just
one value from each

HσH = { h1σh2 | h1, h2 ∈ H }

double-coset, since every other component of q̂ will
be linearly dependent on these.

5. The Skew Spectrum of Graphs

By the results of Sections 2 and 4, plugging (2) into
(11) will give a relabeling invariant representation of
any weighted graph G. As it stands, however, this
seems of only academic interest, since ν must extend
over n! different values for any one of which the com-
bined size of the (q̂ν,λ)λ⊢n matrices is itself n!. More-
over, computing each (q̂ν,λ)λ⊢n requires a separate
Fourier transform.

The first clue to how these problems may be reme-
died is provided by the comment at the end of the last
section that if we are only interested in linearly inde-
pendent invariants, then due to the special structure
of f , we need only let ν take on one value from each
Sn−2 σ Sn−2 double coset. It is easy to see that there
are only 7 such double cosets in Sn, namely

S n7→n

n−1 7→n−1 = { σ ∈ Sn | σ(n) = n, σ(n−1) = n−1 }

S n7→n−1

n−1 7→n
= { σ ∈ Sn | σ(n) = n−1, σ(n−1) = n }

S n7→n

n−1 7→∗
= { σ ∈ Sn | σ(n) = n, σ(n−1) ∈ [n−2] }

S n7→n−1

n−1 7→∗
= { σ ∈ Sn | σ(n) = n−1, σ(n−1) ∈ [n−2] }

S n7→∗

n−1 7→n−1 = { σ ∈ Sn | σ(n) ∈ [n−2], σ(n−1) = n−1 }

S n7→∗

n−1 7→n = { σ ∈ Sn | σ(n) ∈ [n−2], σ(n−1) = n }

S n7→∗

n−1 7→∗
= { σ ∈ Sn | σ(n), σ(n−1) ∈ [n−2] } ,

(12)

where [n−2] = {1, 2, . . . , n−2}.

Definition 1 Given a graph G of n vertices and ad-
jacency matrix A, the skew spectrum of G is defined
as the collection of matrices

q̂ν,λ = r̂†ν,λ · f̂λ, λ ⊢ n, (13)

where rν(σ) = f(σν) f(σ); f is defined as in (2); and
ν takes on one value from each of the double cosets
listed in (12).

The second important consequence of the form of (2)

is that using the right system of irreps, f̂ becomes very
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sparse. To be specific, we use Young’s orthonormal

representation (YOR), which has the special prop-
erty that if σ is restricted to Sn−1, then the ρλ(σ)
matrices block-diagonalize in the form

ρλ(σ) =
⊕

λ−

ρλ−(σ), σ ∈ Sn−1,

where λ− extends over all valid Young diagrams deriv-
able from λ by the removal of a single box. If the pair
of standard tableaux t and t′ feature n at the same
box, then

[ρλ(σ)]t,t′ = [ρλ−(σ)]t↓n−1,t′↓n−1

where t↓n−1 is the standard tableau that we get from
t by removing the box containing n and λ− is the cor-
responding Young diagram. If t and t′ feature n at
different locations, then [ρλ(σ)]t,t′ = 0. Applying this
relation recursively gives that for σ ∈ Sk,

[ρλ(σ)]t,t′ =

{
[ρλ−(σ)]t↓k,t′↓k

or

0
(14)

depending on whether k+1, . . . , n are each in the same
boxes in t and t′ or not.

Now letting Sn/Sn−2 be a set of n(n−1) permutations,
one from each σSn−2 coset, and defining hσ : Sn−2 →
C as hσ(τ) = f(στ), the Fourier transform may be
written as

f̂λ =
∑

σ∈Sn/Sn−2

∑

τ∈Sn−2

f(στ) ρλ(σ) ρλ(τ) =

∑

σ∈Sn/Sn−2

ρλ(σ)
∑

τ∈Sn−2

hσ(τ) ρλ(τ).

Plugging in the appropriate decomposition of ρλ into
a direct sum of irreps of Sn−2 gives

f̂λ =
∑

σ∈Sn/Sn−2

ρλ(σ)
∑

τ∈Sn−2

hσ(τ)
⊕

λ−

ρλ−(τ) =

∑

σ∈Sn/Sn−2

ρλ(σ)
⊕

λ−

[
ĥσ

]
λ−

, (15)

showing that the Fourier transform over Sn may be
broken down into n(n − 1) Fourier transforms over
Sn−2. This relationship is at the heart of the Clausen-
type fast Fourier transforms for Sn (Clausen, 1989).

For f defined by (2), each hσ is a constant function,
and hence its Fourier transform has a very special
form: since in YOR the irrep corresponding to λ = (n)
is the constant representation ρ(n)(σ) = (1), the cor-

responding
[
ĥσ

]
λ

component will be non-zero, but by

unitarity all other components of ĥσ vanish. Plugging
this result into (15) and using (14) shows that only

those columns of f̂ may be non-zero which are indexed
by standard tableau derivable from by adding
a box containing n − 1 and another box containing
n. Here and in the following, when drawing standard
tableau, we only indicate the positions of those num-
bers in them that are not determined by the “numbers
increase from left to right and top to bottom” rule. In
addition, we use the symbol � to denote n and • to
denote n−1. We summarize the above in the following
theorem.

Theorem 1 If f is defined as in (2), then the only

non-zero entries of f̂ in YOR are:

1. the single scalar component f̂(n);

2. the � column of f̂(n−1,1);

3. the • column of f̂(n−1,1);

4. the •� column of f̂(n−2,2);

5. the
•

� column of f̂(n−2,1,1).

This remarkable sparsity is the key to computing the
skew spectrum of graphs efficiently. At the same time
it is rather disappointing, since it manifestly destroys
the invertibility of the f̂λ matrices required for Kakar-
ala’s completeness result. The r̂ν,λ matrices are also
column sparse, but their sparsity pattern is somewhat
more complicated, so we leave describing it to (Kon-
dor, 2008).

Equation (13) only yields non-zero elements in q̂ν,λ

where a non-zero row of r̂†ν,λ meets a non-zero column

of f̂λ. By the above, this happens at only a constant
number of row/column combinations. The exact re-
sult, derived in (Kondor, 2008), is the following.

Theorem 2 Using YOR and an appropriate choice of
{ν} double coset representatives, the skew spectrum of
G has at most 85 non-zero scalar components.

6. Computational Considerations

The computational properties of the skew spectrum
are closely related to the structural results of the previ-
ous section. In particular, it is repeated applications of
Clausen decompositions similar to (15) together with
the sparsity of YOR that yields an efficient algorithm
to compute q̂. In contrast to the previous section, we
now employ a two-level factorization σ = σ1σ2τ , where
τ ∈ Sn−2, σ2 ∈ Sn−1/Sn−2, and σ1 ∈ Sn/Sn−1. As
before, we have n(n − 1) functions hσ1σ2

: Sn−2 → C

defined hσ1σ2
(τ) = f(σ1σ2τ), and by (2) each of these
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is a constant function equal to [A]σ1σ2(n), σ1σ2(n−1).
However, now we will also have intermediate functions
gσ1

: Sn−1 → C defined gσ1
(τ) = f(σ1τ). We then

have the following results.

Lemma 1 Each ĝσ1
can be computed from A in O(n2)

scalar operations.

Proof. Similarly to (15), we can relate the Fourier
transform of gσ1

to the Fourier transforms of (hσ1σ2
)σ2

by

[ĝσ1
]λ =

∑

σ2∈Sn−1/Sn−2

ρλ(σ2)
⊕

λ−

[
ĥσ1σ2

]
λ−

.

Since each ĥλ1λ2
is confined to the one dimensional

component [ĥσ1σ2
](n−2), the only non-zero columns of

ĝσ1
will be the ones indexed by standard tableaux

derivable from by addition of the single box
•, namely • and • . The first one of these
is trivial to compute, since ρ(n−1)(σ2) ≡ (1), collapsing
the above sum to

[ĝσ1
](n−1) =

∑

σ2∈Sn−1/Sn−2

[
ĥσ1σ2

]
(n−2)

.

This is a sum of n − 1 scalars, so it can be computed
in O(n) time. Computing the second component in-

volves taking the direct sum Mσ1σ2
=

⊕
λ−

[
ĥσ1σ2

]
λ−

,
where λ− extends over the two diagrams (n − 2) and
(n − 3, 1) derivable from by removing a box.

However,
[
ĥσ1σ2

]
(n−3,1)

= 0, so Mσ1σ2
has only one

non-zero entry. For given σ2, multiplying ρ(n−2,1)(σ2)
with Mσ1σ2

thus requires n − 2 operations. We are
summing over (n − 1) possible values of σ2, so the to-
tal time complexity is (n − 1)(n − 2). �

Lemma 2 f̂ can be computed from the intermediate
transforms (ĝσ1

)σ1∈Sn/Sn−1
in O(n3) operations.

The proof of Lemma 2 is similar to that of Lemma 1,
but also involves considerations of the sparsity of the
YOR matrices. Unfortunately, space limitations pre-
vent us from providing a proof of this result. Putting
the two lemmas together gives the following theorem.

Theorem 3 The Fourier transform of f as defined in
(2) can be computed in O(n3) operations.

Proof. Each of the n different ĝ transforms can be
computed in O(n2) operations, followed by the single

O(n3) step of computing f̂ from the ĝ’s. �

Computing r̂ν is unfortunately more costly than com-
puting f̂ . An extended version of this paper, which

is in preparation, will show that the time complexity
of this is O(n6). While for n less than about 20 this
might still be feasible, for the type of experiments on
which we wish to validate the skew spectrum it is not
a viable option. The following subsection shows that
most of the components of q̂ can still be computed in
O(n3) operations.

6.1. The Reduced Skew Spectrum

The expensive part of computing r̂ν is computing those
columns outside the five listed in Theorem 1. This
leads to the idea of simply forcing these columns to be
zero.

Definition 2 Given a graph G of n vertices and ad-
jacency matrix A, the reduced skew spectrum of G
is the collection of matrices

q̂∗ν,λ = r̂∗ν,λ
† · f̂λ, λ ⊢ n, (16)

where f ,r, and ν are as in Definition 1, and r̂∗ν denotes
the projection of r̂ν to its columns labeled by

, � , • , •� ,
•

� . (17)

Since r̂∗ν is identical to r̂ν except for zeroing out certain
columns, (q̂∗ν)ν will yield a subset of the 85 scalar in-
variants in (q̂ν)ν . For each value of ν, for λ = (n)

we have one row of r̂∗
†

ν meeting one column of f̂ν

giving one component; for λ = (n − 1, 1) we have
two rows meeting two columns, giving four compo-
nents, etc. In total the reduced skew spectrum has
7 (1 + 4 + 1 + 1) = 49 non-zero scalar components.

The space of functions the Fourier transform of which
has the sparsity pattern (16) is exactly the space of
functions which are invariant on σSn−2 cosets. This
means that for each r̂∗ν there must be a corresponding
matrix Bν related to it the same way that f is related
to the adjacency matrix A. These matrices are given
by the following theorem, the proof of which we again
relegate to a longer publication.

Theorem 4 For r̂∗ν as defined in Definition 2,

r∗ν(σ) = [Bν ]σ(n),σ(n−1),

where the seven possible Bν matrices corresponding to
the seven double cosets listed in (12) are

[B1]i,j = Ai,j Ai,j

[B2]i,j = Ai,j Aj,i

[B3]i,j = 1
nAi,j

∑n
i′=1 Ai′,j

[B4]i,j = 1
nAi,j

∑n
j′=1 Ai,j′
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[B5]i,j = 1
nAj,i

∑n
i′=1 Ai′,j

[B6]i,j = 1
nAj,i

∑n
j′=1 Ai,j′

[B7]i,j = 1
n(n−1)Ai,j

∑n
i′=1

∑n
j′=1 Ai′,j′

Theorem 4 tells us that the reduced skew spectrum
is very simple to compute: simply form the matrices
B1, . . . , B7, compute the corresponding r̂∗ν the same

way as f̂ is computed from A and form the products
(16). In total this takes 8 partial Fourier transforms,
each of which takes O(n3) time.

7. Experiments

In our experiments we evaluate the performance of the
skew spectrum features on four benchmark datasets
of chemical structures of molecules: MUTAG, EN-
ZYMES, NCI1, and NCI109. MUTAG (Debnath
et al., 1991) is a dataset of 188 mutagenic aromatic
and heteroaromatic nitro compounds. The classifi-
cation task is to predict for each molecule whether
it exerts a mutagenic effect on the Gram-negative
bacterium Salmonella typhimurium. ENZYMES is a
dataset which we obtained from (Borgwardt et al.,
2005), and which consists of 600 enzymes from the
BRENDA enzyme database (Schomburg et al., 2004).
In this case the task is to correctly assign each en-
zyme to one of the 6 EC top level classes. The av-
erage number of nodes of the graphs in this dataset
is 32.6 and the average number of edges is 124.3.
Finally, we also conducted experiments on two bal-
anced subsets of NCI1 and NCI109, which classify
compounds based on whether or not they are active
in an anti-cancer screen ((Wale & Karypis, 2006) and
http://pubchem.ncbi.nlm.nih.gov).

Since in these datasets the number of vertices varies
from graph to graph, we set n to be the maximum over
the entire dataset and augment each of the smaller
graphs with the appropriate number of unconnected
“phantom” nodes. The experiments consisted of run-
ning SVMs on the above data using the reduced skew
spectrum features (linear kernel on these features), the
random walk kernel (Gärtner et al., 2003), (with λ set
to 10−3 on MUTAG/ENZYMES, and 10−4 on the NCI
datasets for optimal performance), and an equal length
shortest-path kernel (Borgwardt & Kriegel, 2005).

Our experimental procedure was as follows. We split
each dataset into 10 folds of identical sizes. We then
split 9 of these folds again into 10 parts, trained a
C-SVM (implemented by LIBSVM (Chang & Lin,
2001)) on 9 parts, and predicted on the 10th part.
We repeated this training and prediction procedure
for C ∈ {10−7, 10−6, . . . , 107}, and determined the C

reaching maximum prediction accuracy on the 10th
part. We then trained an SVM with this best C on all
9 folds (= 10 parts), and predicted on the 10th fold,
which acts as an independent evaluation set. We re-
peated the whole procedure 10 times so that each fold
acts as independent evaluation set exactly once. For
each dataset and each method, we repeat the whole
experiment 10 times and report mean accuracy levels
and standard errors in Table 2. In three out of four ex-
periments the skew spectrum beats the other methods,
including the shortest-path kernel, which is considered
state of the art for graphs of this type. Using a Gaus-
sian RBF kernel instead of the linear kernel yields very
similar results.

8. Conclusions

We have presented a new system of graph invariants,
called the skew spectrum of graphs, based on a purely
algebraic technique. From a mathematical point of
view the skew spectrum is interesting because it brings
a fundamentally new technique to constructing graph
invariants. From a practical machine learning point
of view the skew spectrum is interesting because it
provides a powerful, yet efficiently computable repre-
sentation for graph structured data instances.
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