
Bi-Level Path Following for Cross Validated Solution of Kernel
Quantile Regression

Saharon Rosset saharon@post.tau.ac.il

Department of Statistics and Operations Research, The Raymond and Beverly Sackler School of Mathematical
Sciences, Tel Aviv University, Israel

Abstract

Modeling of conditional quantiles requires
specification of the quantile being estimated
and can thus be viewed as a parameterized
predictive modeling problem. Quantile loss
is typically used, and it is indeed parameter-
ized by a quantile parameter. In this paper
we show how to follow the path of cross val-
idated solutions to regularized kernel quan-
tile regression. Even though the bi-level op-
timization problem we encounter for every
quantile is non-convex, the manner in which
the optimal cross-validated solution evolves
with the parameter of the loss function al-
lows tracking of this solution. We prove this
property, construct the resulting algorithm,
and demonstrate it on data. This algorithm
allows us to efficiently solve the whole family
of bi-level problems.

1. Introduction

In the standard predictive modeling setting,
we are given a training sample of n examples
{x1, y1}, ..., {xn, yn} drawn i.i.d from a joint distribu-
tion P (X, Y ), with xi ∈ Rp and yi ∈ R for regression,
yi ∈ {0, 1} for two-class classification. We aim to
utilize these data to build a model Ŷ = f̂(X) to
describe the relationship between X and Y , and later
use it to predict the value of Y given new X values.
This is often done by defining a family of models
F and finding (exactly or approximately) the model
f ∈ F which minimizes an empirical loss function:∑n

i=1 L(yi, f(xi)). Examples of such algorithms
include linear and logistic regression, empirical risk
minimization in classification and others.
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If F is complex, it is often desirable to add regular-
ization to control model complexity and overfitting.
The generic regularized optimization problem can be
written as:

f̂ = arg min
f∈F

n∑

i=1

L(yi, f(xi)) + λJ(f)

where J(f) is an appropriate model complexity
penalty and λ is the regularization parameter. Given
a loss and a penalty, selection of a good value of λ is
a model selection problem. Popular approaches that
can be formulated as regularized optimization prob-
lems include all versions of support vector machines,
ridge regression, the Lasso and many others. For an
overview of predictive modeling, regularized optimiza-
tion and the algorithms mentioned above, see for ex-
ample Hastie et al. (2001).

In this paper we are interested in a specific setup where
we have a family of regularized optimization prob-
lems, defined by a parameterized loss function and a
regularization term. A major motivating example for
this setting is regularized quantile regression (Koenker,
2005):

β̂(τ, λ) = arg min
β

n∑

i=1

Lτ (yi − βTxi) + λ‖β‖q
q (1)

for 0 < τ < 1, 0 ≤ λ < ∞
where Lτ , the parameterized quantile loss function,
has the form:

Lτ (r) =
{

rτ r ≥ 0
−r(1− τ) r < 0

and is termed τ -quantile loss because its population
optimizer is the appropriate quantile (Koenker, 2005):

arg min
c

E(Lτ (Y − c)|X) = quantile τ of P (Y |X) (2)

Because quantile loss has this optimizer, the solution
of the quantile regression problems for the whole range
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0 < τ < 1 has often been advocated as an approach to
estimating the full conditional probability of P (Y |X)
(Koenker, 2005; Perlich et al., 2007). Much of the in-
teresting information about the behavior of Y |X may
lie in the details of this conditional distribution, and
if it is not nicely behaved (i.i.d Gaussian noise being
the most commonly used concept of nice behavior),
just estimating a conditional mean or median is often
not sufficient to properly understand and model the
mechanisms generating Y . The importance of estimat-
ing a complete conditional distribution, and not just
a central quantity like the conditional mean, has long
been noted and addressed in various communities, like
Econometrics, Education and Finance (Koenker, 2005;
Buchinsky, 1994; Eide & Showalter, 1998). There has
also been a surge of interest in the Machine Learning
community in conditional quantile estimation in re-
cent years (Meinshausen, 2006; Takeuchi et al., 2006).
Figure 1 shows a graphical representation of Lτ for
several values of τ , and a demonstration of the con-
ditional quantile curves in a univariate regression set-
ting, where the linear model is correct for the median,
but the noise has a non-homoscedastic distribution.

On the penalty side, we typically use the `q norm of the
parameters with q ∈ {1, 2}. Adding a penalty can be
thought of as shrinkage, complexity control or putting
a prior to express our expectation that the β’s should
be small.

As has been noted in the literature (Rosset & Zhu,
2007; Hastie et al., 2004; Li et al., 2007) if q ∈ {1, 2}
and if we fix τ = τ0, we can devise path following
(AKA parametric programming) algorithms to effi-
ciently generate the 1-dimensional curve of solutions
{β̂(τ0, λ) : 0 ≤ λ < ∞} . Although it has not been
explicitly noted by most of these authors, it naturally
follows that similar algorithms exist for the case that
we fix λ = λ0 and are interested in generating the
curve {β̂(τ, λ0) : 0 < τ < 1}.
In addition to parameterized quantile regression, there
are other modeling problems in the literature which
combine a parameterized loss function problem with
the existence of efficient path following algorithms.
These include Support vector regression (SVR, Smola
and Schölkopf (2004), see Gunther and Zhu (2005) for
path following algorithm) with `1 or `2 regularization,
where the parameter ε determines the width of the
don’t care region around 0.

An important extension of the `2-regularized optimiza-
tion problem is to non-linear fitting through kernel
embedding (Schölkopf & Smola, 2002). The kernel-

ized version of problem (1) is:

f̂(τ, λ) = arg min
f

∑

i

Lτ (yi − f(xi)) +
λ

2
‖f‖2HK

(3)

where ‖ · ‖HK is the norm induced by the positive-
definite kernel K in the Reproducing Kernel Hilbert
Space (RKHS) it generates. The well known repre-
senter theorem (Kimeldorf & Wahba, 1971) implies
that the solution of problem (3) lies in a low dimen-
sional subspace spanned by the representer functions
{K(·,xi), i ∈ 1, ..., n}. Following the ideas of Hastie
et al. (2004) for the support vector machine, Li et al.
(2007) have shown that λ-path of solutions to problem
(3) when τ is fixed can also be efficiently generated.

It is important to note the difference in the roles of
the two parameters τ, λ. The former defines a family
of loss functions, in our case leading to estimation of
different quantiles. Thus we would typically want to
build and use a model for every value of τ . The latter
is a regularization parameter, controlling model com-
plexity with the aim of generating a better model and
avoiding overfitting, and is not part of the prediction
objective (at least as long as we avoid the Bayesian
view). We would therefore typically want to generate
a set of models β∗(τ) (or f∗(τ) in the kernel case), by
selecting a good regularization parameter λ∗(τ) for ev-
ery value of τ , thus obtaining a family of good models
for estimating the range of conditional quantiles, and
consequently the whole conditional distribution.

This problem, of model selection to find a good
regularization parameter, is often handled through
cross-validation. In its simplest form, cross-validation
entails having a second, independent set of data
{x̃i, ỹi}N

i=1 (often referred to as a validation set), which
is used to evaluate the performance of the models and
select a good regularization parameter. For a fixed
τ , we can write our model selection problem as a Bi-
level programming extension of problems (1, 3), where
f∗(τ) = f̂(τ, λ∗) and λ∗ solves:

min
λ

N∑

i=1

Lτ (ỹi, f̂(τ, λ)Tx̃i) (4)

s.t. f̂(τ, λ) solves problem (3)

The objective of this minimization problem is not con-
vex as a function of λ. A similar non-convex opti-
mization problem has been tackled by Kunapuli et al.
(2007). The fundamental difference between their set-
ting and ours is that they had a single bi-level op-
timization problem, while we have a family of such
problems, parameterized by τ . This allows us to take
advantage of internal structure to solve the bi-level
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Figure 1. Quantile loss function for some values of τ (left) and an example where the median of Y is linear in X but the
quantiles of P (Y |X) are not because the noise is not identically distributed (right).

problem for all values of τ simultaneously (or more
accurately, in one run of our algorithm).

The concept of a parameterized family of bi-level reg-
ularized quantile regression problems is demonstrated
in Figure 2, where we see the cross-validation curves
of the objective of (4) as a function of λ for several
values of τ on the same dataset. As we can see, the
optimal level of regularization varies with the quantile,
and correct choice of the regularization parameter can
have a significant effect on the success of our quantile
prediction model.

The main goal of this paper is to devise algorithms for
following the bi-level optimal solution path f∗(τ) as a
function of τ , and demonstrate their practicality. We
show that this non-convex family of bi-level programs
can be solved exactly, as the optimum among the so-
lutions of O(n + N) standard (convex) path-following
problems, with some additional twists. This result is
based on a characterization of the evolution of the so-
lution path f̂(τ, ·) as τ varies, and on an understand-
ing of the properties of optimal solutions of the bi-
level problem, which can only occur at a limited set
of points. We combine these insights to formulate an
actual algorithm for solving this family of bi-level pro-
grams via path-following.

The rest of this paper is organized as follows. In Sec-
tion 2 we discuss the properties of the quantile regres-
sion solution paths f̂(τ, λ) and their evolution as τ
changes. We then discuss in Section 3 the properties of
the bi-level optimization problem (4) and demonstrate
that the solutions change predictably with τ . Bring-
ing together all our insights leads us to formulate an
algorithm in Section 4, which allows us to follow the
path of solutions {f∗(τ) , 0 < τ < 1} and only requires
following a large but manageable number of solution

paths of problem (3) simultaneously. We demonstrate
our methods with a simulated data study in Section
5, where we demonstrate the computational efficiency
of our approach and the ability of KQR to capture
non-standard conditional distributions P (Y |X).

This paper is a short version of Rosset (2008), and
we defer the proofs, some of the technical details and
much of the discussion to that version.

2. Quantile Regression Solution Paths

We concentrate our discussion on the kernel quantile
regression (KQR) formulation in (3), with the un-
derstanding that it subsumes the linear formulation
(1) with `2 regularization by using the linear kernel
K(x, x̃) = xTx̃.

We briefly survey the results of Li et al. (2007) regard-
ing the properties of f̂(τ, ·), the optimal solution path
of (3), with τ fixed. The representer theorem (Kimel-
dorf & Wahba, 1971) implies that the solution can be
written as:

f̂(τ, λ)(x) =
1
λ

[
β̂0 +

n∑

i=1

θ̂iK(x,xi)

]
(5)

For a proposed solution f(x) define:

• E = {i : yi − f(xi) = 0} (points on elbow of Lτ )

• L = {i : yi − f(xi) < 0} (left of elbow)

• R = {i : yi − f(xi) > 0} (right of elbow)

Then Li et al. (2007) show that the Karush-Kuhn-
Tucker (KKT) conditions for optimality of a solution
f̂(τ, λ) of problem (3) can be phrased as:
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Figure 2. Estimated prediction error curves of Kernel Quantile Regression for some quantiles on one dataset. The errors
are shown as a function of the regularization parameter λ

• i ∈ E ⇒ −(1− τ) ≤ θ̂i ≤ τ

• i ∈ L ⇒ θ̂i = −(1− τ)

• i ∈ R ⇒ θ̂i = τ

• ∑
i θ̂i = 0

with some additional algebra they show that for a fixed
τ , there is a series of knots, 0 = λ0 < λ1 < ... < λm <
∞ such that for λ ≥ λm we have f̂(τ, λ) = constant
and for λk−1 < λ ≤ λk we have:

f̂(τ, λ)(x) =
1
λ

(
λkf̂(τ, λk)(x) + (λ− λk)hk(x)

)
(6)

where hk(x) = bk
0 +

∑
i∈Ek

bk
i K(x,xi) can be thought

of as the direction in which the solution is moving for
the region λk−1 < λ ≤ λk. The knots λk are points on
the path where an observation passes between E and
either L or R, that is ∃i ∈ E such that exactly θi = τ
or θi = −(1− τ). These insights lead Li et al. (2007)
to an algorithm for incrementally generating f̂(τ, λ) as
a function of λ for fixed τ , starting from λ = ∞ (where
the solution only contains the intercept β0).

Although Li et al. (2007) suggest it is a topic for fur-
ther study, it is in fact a reasonably straight forward
extension of their results to show that a similar sce-
nario holds when we fix λ and allow τ only to change,
and also when both τ, λ are changing together along
a straight line, i.e., a 1-dimensional subspace of the
(τ, λ) space (this has been observed by Wang et al.
(2006) for SVR, which is very similar from an opti-
mization perspective). The explicit result is given in
(Rosset, 2008), but we omit it here for brevity, given
its marginal novelty.

Armed with this result, we next show the main re-
sult of this section: that the knots themselves move
in a (piecewise) straight line as τ changes, and can
therefore be tracked as τ and the regularization path
change. Fix a quantile τ0 and assume that λk is

a knot in the λ-solution path for quantile τ0. Fur-
ther, let ik be the observation that is passing in or
out of the elbow at knot λk. Assume WLOG that
θ̂ik

(τ0, λk) = τ0, i.e. it is on the boundary between
Rk and Ek. Let K̃Ek

be the matrix KEk
with the ik

column removed, and b̃k = bk with index ik removed.
Let si =

∑
j∈R∪L∪{ik}K(xi,xj) for i ∈ Ek. Let sEk

be the vector of all these values.

Theorem 1 Any knot λk moves linearly as τ changes.
That is, there exists a constant ck such that for quan-
tile τ0 + δ there is a knot in the λ-solution path at
λk + ckδ, for δ ∈ [−εk, νk], a non-empty neighborhood
of 0. ck is determined through the solution of another
set of |Ek|+1 linear equations with |Ek|+1 unknowns:

Bk

(
b̃k

ck

)
=

( −(|R|+ |L|+ 1)
−sEk

)

with

Bk =
(

0 1T 0
1 K̃Ek

−yEk

)

And the fit at this knot progresses as:

f̂(τ0 + δ, λk + ckδ) = (7)

=
1

λk + ckδ

(
λkf̂(λk, τ0)(x) + δhk(x)

)

hk(x) = b̃k
0 +

∑

i∈Ek−ik

b̃k
i K(x,xi) + (8)

+
∑

i∈L∪R∪{ik}
K(x,xi)

This theorem tells us that we can in fact track the
knots in the solution efficiently as τ changes. We still
have to account for various types of events that can
change the direction the knot is moving in. The value
θi for a point in Ek − {ik} can reach τ or −(1− τ), or
a point in L∪R may reach the elbow E . These events
correspond to knots crossings, i.e., the knot λk is en-
countering another knot (which is tracking the other
event). There are also knot birth events, and knots
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merge events, which are possible but rare, and some-
what counter-intuitive. The details of how these are
identified and handled can be found in the detailed
algorithm description (Rosset, 2008). When any of
these events occurs, the set of knots has to be up-
dated and their directions have to be re-calculated us-
ing Theorem 1 and the new identity of the sets E ,L,R
and the observation ik. This in essence allows us to
map the whole 2-dimensional solution surface f̂(τ, λ).

3. The Bi-Level Optimization Problem

Our next task is to show how our ability to track the
knots as τ changes allows us to track the solution of
the bi-level optimization problem (4), as τ changes.
The key to this step is the following result.

Theorem 2 Any minimizer1 of (4) is always either
at a knot in the λ-path for this τ or a point where
a validation observation crosses the elbow. In other
words, one of the two following statements must hold:

• λ∗ is a knot: ∃i ∈ {1...n} s.t. f̂(τ, λ∗(τ))(xi) =
yi and θi ∈ {τ,−(1− τ)}, or

• λ∗ is a validation crossing:
∃i ∈ {1...N} s.t. f̂(τ, λ∗(τ))(x̃i) = ỹi

Corollary 1 Given the complete solution path for τ =
τ0, the solutions of the bi-level problem (4) for a range
of quantiles around τ0 can be obtained by following the
paths of the knots and the validation crossings only, as
τ changes.

To implement this corollary in practice, we have two
main issues to resolve: 1. How do we follow the paths
of the validation crossings? 2. How do we determine
which one of the knots and validation crossings is going
to be optimal for every value of τ?

The first question is easy to answer when we consider
the similarity between the knot following problem we
solve in Theorem 1 and the validation crossing follow-
ing problem. In each case we have a set of elbow obser-
vations whose fit must remain fixed as τ changes, but
whose θ̂ values may vary; sets L,R whose θ̂ are chang-
ing in a pre-determined manner with τ , but whose
fit may vary freely; and one special observation which
characterizes the knot or validation crossing. The only
difference is that in a knot this is a border observation
from the training set, so both its fit and its θ̂ are pre-
determined, while in the case of validation crossing it

1In pathological cases there may be a “segment” of min-
imizers. In this case it can be shown that such a segment
will always be flanked by points described in the theorem.

is a validation observation, whose fit must remain fixed
(at the elbow), but which does not even have a θ̂ value.
Taking all of this into account, it is easy to show a re-
sult similar to Theorem 1 for the validation crossings.
We refer the reader to Rosset (2008) for the details.

The second question we have posed requires us to ex-
plicitly express the validation loss (i.e., Lτ on the val-
idation set) at every knot and validation crossing in
terms of δ, so we can compare them and identify the
optimum at every value of δ. Using the representation
in (7) we can write the validation loss for a knot k :

∑N
i=1 Lτ (ỹi, f̂(τ0 + δ, λk + ckδ)(x̃i)) = . . . =

=
quadratic in δ

λk + ckδ
(9)

see Rosset (2008) for details, and note that similar ex-
pressions can naturally be derived for validation cross-
ings. These are rational functions of δ with quadratic
expressions in the numerator and linear expressions
in the denominator. Our cross-validation task can be
re-formulated as the identification of the minimum of
these rational functions among all knots and validation
crossings, for every value of τ in the current segment,
where the directions hk, hv of all knots and validation
crossings are fixed (and therefore so are the coefficients
in the rational functions). This is a lower-envelope
tracking problem, which has been extensively studied
in the literature (Sharir and Agarwal (1995) and ref-
erences therein).

To calculate the meeting point of two elements with
neighboring scores we find the zeros of the cubic equa-
tion obtained by requiring equality for the two rational
functions of the form (9) corresponding to the two ele-
ments. The smallest non-negative solution for δ is the
one we are interested in.

4. Algorithm Overview

Bringing together all the elements from the previ-
ous sections, we now give (Algorithm 1) a succinct
overview of the resulting algorithm. Since there is a
multitude of details, we defer a detailed pseudo-code
description of our algorithm to Rosset (2008).

The algorithm follows the knots of the λ-solution path
as τ changes using the results of Section 2, and keeps
track of the cross-validated solution using the results
of Section 3. Every time an event happens (like a knot
crossing), the direction in which two of the knots are
moving has to be changed, or knots have to be added
or deleted. Between these events, the evolution of the
cross-validation objective at all knots and validation
crossings has to be sorted and followed. Their order
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is maintained, and updated whenever crossings occur
between them.

4.1. Approximate Computational Complexity

Looking at Algorithm 1, we should consider the num-
ber of steps of the two loops and the complexity of
the operations inside the loops. Even for a “standard”
λ-path following problem for fixed τ , it is in fact im-
possible to rigorously bound the number of steps in
the general case, but it has been argued and empiri-
cally demonstrated by several authors that the num-
ber of knots in the path behaves as O(n), the number
of samples (Rosset & Zhu, 2007; Hastie et al., 2004;
Li et al., 2007). In our case the outer loop of Al-
gorithm 1 implements a 2-dimensional path following
problem, that can be thought of as following O(n) 1-
dimensional paths traversed by the knots of the path.
It therefore stands to reason (and we confirm it empir-
ically below) that the outer loop typically has O(n2)
steps where events happen. The events in the inner
loop, in turn, have to do with N validation observa-
tions meeting the O(n) knots. So a similar logic would
lead us to assume that the number of meeting events
(counted by the inner loop) should be at most O(nN)
total for the whole running of the algorithm (i.e., many
iterations of the outer loop may have no events hap-
pening in the inner loop). Each iteration of either
loop requires a re-calculation of up to three directions
(of knots or validation crossings), using Theorem 1.
These calculations involve updating and inversion of
matrices that are roughly |E| × |E| in size (where |E|
is the number of observations in the elbow). However
note that only one row and column are involved in the
updating, leading to a complexity of O(n + |E|2) for
the whole direction calculation operation, using the
Sherman-Morrison formula for updating the inverse.
In principle, |E| can be equal to n, although it is typ-
ically much smaller for most of the steps of the algo-
rithm, on the order of

√
n or less. So we assume here

that the loop cost is between O(n) and O(n2).

Putting all of these facts and assumptions together,
we can estimate the algorithm’s complexity’s typ-
ical dependence on the number of observations in
the training and validation set as ranging between
O(n2 ·max(n,N)) and O(n3 ·max(n,N)). Clearly, this
estimation procedure falls well short of a formal “worst
case” complexity calculation, but we offer it as an in-
tuitive guide to support our experiments below and
get an idea of the dependence of running time on the
amount of data used.

We have not considered the complexity of the lower
envelope tracking problem in our analysis, because it is

expected to have a much lower complexity (number of
order changes O(max(n,N) log(max(n,N))) and each
order change involves O(1) work).

5. Experiments

We demonstrate two main aspects of our methodol-
ogy: The computational behavior as a function of
the amount of training data used; and the ability of
KQR to capture the form of the conditional distribu-
tion P (Y |X), both in standard (i.i.d error) situations
and when the error is not homoscedastic and asym-
metric. We limit the experiments to simple simulated
data, where we know the truth and can understand
the behavior of KQR. This is due to shortage of space,
and since our main contribution is not a new method
that should be compared to competitors on real data,
but rather a new algorithmic approach for an existing
method.

Our simulation setup starts from univariate data
x ∈ [0, 1] and a “generating” function f(x) = 2 ·(
exp(−30 · (x− 0.25)2) + sin(π · x2)

)
(see Figure 3).

We then let Y = f(x) + ε, where the errors ε are inde-
pendent, with a distribution that can be either:

1. ε ∼ N(0, 1), i.e., i.i.d standard normal errors

2. ε+(x+1)2 ∼ exp(1/(x+1)2), which gives us errors
that are still independent and have mean 0, but
are asymmetric and have non-constant variance,
with small signal-to-noise ratio on the higher val-
ues of x (see Figure 4).

Figure 3 demonstrates the results of the algorithm
with i.i.d normal errors, 200 training samples and 200
validation samples and Gaussian kernel with param-
eter σ = 0.2. We see that the quantile estimates all
capture the general shape of the true curve, with some
“smoothing” due to regularization.

Next we consider the computational complexity of the
algorithm, and its dependence on the number of train-
ing samples (with 200 validation samples). We com-
pare it to the 1-dimensional KQR algorithm of Li
et al. (2007), who have already demonstrated that
their algorithm is significantly more efficient than grid-
based approaches for generating 1-dimensional paths
for fixed τ . Table 1 shows the number of steps of the
main (outer) loop of Algorithm 1 and the total run
time of our algorithm for generating the complete set
of cross-validated solutions for τ ∈ [0.1, 0.9] as a func-
tion of the number of training samples (with validation
sample fixed at 200). Also shown is the run time for
the algorithm of Li et al. (2007), when we use it on a
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Algorithm 1 Main steps of our bi-level path following algorithm
Input: The entire λ-solution path for quantile τ0; the bi-level optimizer λ∗(τ0)
Output:Cross-validated solutions f∗(τ) for τ ∈ [τ0, τend]
Initialization: identify all knots and validation crossings in the solution path for τ0;
Find direction of each knot according to Theorem 1
Find direction of each validation crossing
Create a list M of knots and validation crossings sorted by their validation loss
Let λ∗(τ0) be the one at the bottom of the list M , and f∗(τ0) accordingly
Calculate future meeting of each pair of neighbors in M by solving the cubic equation implied by (9)
Set τnow = τ0

while τnow < τend do
Find value τ1 > τnow where first knot crossing occurs
Find value τ2 > τnow where first knot merge occurs
Find value τ3 > τnow where first knot birth occurs
Set τnew = min(τ1, τ2, τ3)
while τnow < τnew do

Find value τ4 > τnow where first future meeting (order change) in M occurs
Find value τ5 > τnow where first validation crossing birth occurs
Find value τ6 > τnow where first validation crossing cancelation occurs
Set τnext = min(τ4, τ5, τ6)
Update λ∗(τ), f∗(τ) for τ ∈ (τnow, τnext) as the evolution of the knot or validation crossing attaining the minimal
Lτ in M (i.e., the one at λ∗(τnow))
Update M according to the first event (order change, birth, cancelation)
Update the future meetings of the affected elements using (9)
Set τnow = τnext

end while
Update the list of knots according to the first event (knot crossing, birth, merge)
Update the directions of affected knots using Theorem 1

end while
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Figure 3. The function f(x) (solid), data points drawn
from it with i.i.d normal error, and our cross-validated
estimates of quantiles 0.1, 0.25, 0.5, 0.75, 0.9 (dahsed lines,
from bottom to top).

grid of 8000 evenly spaced τ values in [0.1, 0.9] and find
the best cross validated solution by enumerating the
candidates as identified in Section 3. Our conjecture
that the number of knots in the 2-dimensional path
behaves like O(n2) seems to be consistent with these
results, as is the hypothesized overall time complexity
dependence of O(n3).

Finally, we demonstrate the ability of KQR to cap-

Table 1. Number of steps and run times of our algorithm
and of Li et al. (2007), for the whole path from τ = 0.1 to
τ = 0.9.

ntrain nsteps time(bi-level) time(Li et al.)
200 29238 931 sec. 2500 sec.
100 12269 99 sec. 900 sec.
50 2249 23 sec. 480 sec.

ture the quantiles with “strange” errors from model
2. Figure 4 shows a data sample generated from
this model and the (0.25, 0.5, 0.75) quantiles of the
conditional distribution P (Y |X) (solid), compared to
their cross-validated KQR estimates (dashed), using
500 samples for learning and 200 for validation (more
data is needed for learning because of the very large
variance at values of x close to 1). As expected, we
can see that estimation is easier of the lower quantiles
and at smaller values of x, because the distribution
P (Y |X = x) has long right tails everywhere and has
much larger variance when x is big.

6. Conclusions and Extensions

In this paper we have demonstrated that the family
of bi-level optimization problems (4) defined by the
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Figure 4. Quantiles of P (Y |X) (solid), and their estimates
(dashed) for quantiles (0.25, 0.5, 0.75) with the exponential
error model.

family of loss functions Lτ can be solved via a path
following approach which essentially maps the whole
surface of solutions f̂(τ, λ) as a function of both τ and
λ and uses insights about the possible locations of the
bi-level optima to efficiently find them. This leads to
a closed-form algorithm for finding f∗(τ) for all quan-
tiles. We see two main contributions in this work: a.
Identification and solution of a family of non-convex
optimization problem of great practical interest which
can be solved using solely convex optimization tech-
niques; and b. Formulation of a practical algorithm
for generating the full set of cross-validated solutions
for the family of kernel quantile regression problems.

Our algorithm as presented here can easily be adapted
to bi-level path following of cross validated solutions
of SVR, as the size ε of the don’t-care region changes
(see Rosset (2008) for details). However, it should be
noted that the statistical motivation for solving quan-
tile regression for multiple quantiles does not really
carry through to ε-SVR, as the parameter ε and the
loss function it parameterizes do not have a natural
interpretation in the spirit of τ .

There are many other interesting aspects of our work,
which we have not touched on here, including: de-
velopment of further optimization shortcuts to im-
prove algorithmic efficiency; investigation of the range
of applicability of our algorithmic approach beyond
KQR and SVR; analysis of the use of various kernels
for KQR and how the kernel parameters and kernel
properties interact with the solutions; implementation
of in-sample model selection approaches such as SIC
(Koenker, 2005; Li et al., 2007) instead of cross valida-
tion in our framework (which should require minimal
changes).
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