
Optimized Cutting Plane Algorithm for Support Vector Machines

Vojtěch Franc VOJTECH.FRANC@FIRST.FRAUNHOFER.DE
Soeren Sonnenburg SOEREN.SONNENBURG@FIRST.FRAUNHOFER.DE

Fraunhofer Institute FIRST, Kekulestr. 7, 12489 Berlin, Germany

Abstract

We have developed a new Linear Support Vec-
tor Machine (SVM) training algorithm called
OCAS. Its computational effort scales linearly
with the sample size. In an extensive empirical
evaluation OCAS significantly outperforms cur-
rent state of the art SVM solvers, like SVMlight ,
SVMperf and BMRM, achieving speedups of
over 1,000 on some datasets over SVMlight and
20 over SVMperf , while obtaining the same pre-
cise Support Vector solution. OCAS even in the
early optimization steps shows often faster con-
vergence than the so far in this domain prevail-
ing approximative methods SGD and Pegasos.
Effectively parallelizing OCAS we were able to
train on a dataset of size 15 million examples (it-
self about 32GB in size) in just 671 seconds —
a competing string kernel SVM required 97,484
seconds to train on 10 million examples sub-
sampled from this dataset.

1. Introduction
Many applications in e.g. Bioinformatics, IT-Security and
Text-Classification come with huge amounts (e.g. millions)
of data points, which are indeed needed to obtain state-
of-the-art results. They therefore require computation-
ally extremely efficient methods capable of dealing with
ever growing data sizes. Support Vector Machines (SVM)
e.g. (Cortes & Vapnik, 1995; Cristianini & Shwawe-Taylor,
2000) have proven to be powerful tools for a wide range
of different data analysis problems. Given labeled training
examples {(x1, y1), . . . (xm, ym)} ∈ (Rn × {−1,+1})m

and a regularization constant C > 0 they learn a linear
classification rule h(x) = sgn(〈w∗,x〉 + b∗) by solving
the quadratic SVM primal optimization problem (P) or its
dual formulation (D) allowing the use of kernels.

Appearing in Proceedings of the 25 th International Conference
on Machine Learning, Helsinki, Finland, 2008. Copyright 2008
by the author(s)/owner(s).

(P) min
w,ξ,b

1

2
‖w‖2

2 +
C

m

mX
i=1

ξi, for w ∈ Rn, ξ ∈ Rm
+ , b ∈ R

s.t. yi (〈w, xi〉+ b) ≥ 1− ξi, i = 1, . . . , m

(D) max
α∈Rm

∑m
i=1 αi − 1

2

∑m
i=1

∑m
j=1 αiαjyiyj 〈xi,xj〉

s.t. :
∑m

i=1 αiyi = 0, 0 ≤ αi ≤ C
m , i = 1 . . .m

Due to the central importance of SVMs, many techniques
have been proposed to solve the SVM problem. As in prac-
tice only limited precision solutions to (P) and (D) can be
obtained they may be categorized into approximative and
accurate.

Approximative Solvers make use of heuristics
(e.g. learning rate, number of iterations) to obtain
(often crude) approximations to the QP-solution. They
have very low per-iteration cost and low total training time.
Especially for large scale problems, they are claimed to be
sufficiently precise while delivering the best performance
vs. training time trade-off (Bottou & Bousquet, 2008),
which may be attributed to the robust nature of large
margin SVM solutions. However while they are fast in
the beginning they often fail to achieve precise solution.
Among the to-date most efficient solvers are Pegasos
(Shwartz et al., 2007) and SGD (Bottou & Bousquet,
2008), which are based on stochastic (sub-)gradient
descent.

Accurate Solvers In contrast to approximative solvers,
accurate methods solve a QP up to a given precision ε,
where ε commonly denotes the violation of the relaxed
KKT conditions (Joachims, 1999) or the (relative) duality
gap. Accurate methods often have good asymptotic conver-
gence properties, and thus for small ε converge to very pre-
cise solutions being limited only by numerical precision.
Classical examples are off-the-shelf optimizers (e.g. MI-
NOS, CPLEX, LOQO). However it is usually infeasible to
use standard optimization tools for solving the SVM train-
ing problems (D) on datasets containing more than a few
thousand examples. So-called decomposition techniques as
chunking (e.g. used in (Joachims, 1999)), or SMO (used in

Optimized Cutting Plane Algorithm for Support Vector Machines

(Chang & Lin, 2001)) overcome this limitation by exploit-
ing the special structure of the SVM problem. The key idea
of decomposition is to freeze all but a small number of op-
timization variables (working set) and to solve a sequence
of constant-size problems (subproblems of the SVM dual).
While decomposition based solvers are very flexible as they
are working in the dual and thus allow the use of kernels
they become computationally intractable with a few hun-
dred thousand examples. This limitation can be explained
as follows: Decomposition methods exploit the fact that
the optimal solution of (P) does not change if inactive con-
straints at the optimum are removed, they are therefore
only efficient if the number of active constraints is reason-
ably small. Unfortunately, the number of active constraints
is lower bound by the portion of misclassified examples,
which is proportional to the number of examples m. Thus
decomposition methods are computationally prohibitive for
large-scale problems (empirically about 10%-30% of the
training points become active constraints).

This poses a challenging task for even current state-of-the-
art SVM solvers such as SVMlight (Joachims, 1999), Gra-
dient Projection-based Decomposition Technique-SVM
(GPDT-SVM) (Zanni et al., 2006), LibSVM (Chang & Lin,
2001). As improving training times using the dual formula-
tion is hard, the research focus has shifted back to the orig-
inal SVM primal problem. The importance of being able
to efficiently solve the primal problem for large datasets is
documented by a number of very recently developed meth-
ods, e.g. SVMLin (Sindhwani & Keerthi, 2007; Chapelle,
2007), LibLinear (Lin et al., 2007), SVMperf (Joachims,
2006) and BMRM (Teo et al., 2007).

In the following we will focus on finding accurate solutions
of the unconstrained linear SVM primal problem1

w∗ = argmin
w

F (w) :=
[

1
2‖w‖

2 + CR(w)
]

, (1)

where R(w) = 1
m

∑m
i=1 max{0, 1− yi〈w,xi〉} (2)

is a convex risk approximating the training error.

Among the up to date most efficient accurate SVM primal
problem (1) solvers are the Cutting Plane Algorithm (CPA)
based methods put forward in (Joachims, 2006; Teo et al.,
2007) and implemented in SVMperf and BMRM. The idea
of CPAs is to approximate the risk R by a piece-wise linear
function defined as the maximum over a set of linear under-
estimators, in CPA terminology called cutting planes. In
(Joachims, 2006; Teo et al., 2007) it was shown that their
number does not depend on the number of training exam-
ples m and that very few such cutting planes are needed in
practice to sufficiently approximate (1).

1Note that we focus on the linear rule without a bias. The
bias can be included by adding a constant feature to each training
example xi.

In this work we propose a new method, called the Opti-
mized Cutting Plane Algorithm for SVMs (OCAS). We
empirically show that OCAS converges on a wide vari-
ety of large-scale datasets even considerably faster than
SVMperf , BMRM and SVMlight , achieving speedups of
several orders of magnitude on some problems. We also
demonstrate that OCAS even in the early optimization steps
shows faster convergence than the so far in this domain
dominating approximative methods. Finally we critically
analyze all solvers w.r.t. classification performance in an
extensive model selection study.

The report is organized as follows. CPA is described in
Section 2. In Section 3, we point out a source of ineffi-
ciency of CPA and propose a new method, OCAS, to allevi-
ate the problem and prove linear convergence. An extensive
empirical evaluation is given in Section 4 and concludes the
paper.

2. Cutting Plane Algorithm
Recently, the Cutting Plane Algorithm (CPA) based large-
scale solvers, SVMperf (Joachims, 2006) and BMRM (Teo
et al., 2007), have been proposed. SVMperf implements
CPA specifically for the linear SVM problem (1). De-
coupling regularizer and loss function, BMRM generalizes
SVMperf to a wide range of losses and regularizers mak-
ing it applicable to many machine learning problems, like
classification, regression, structure learning etc. It should
be noted that BMRM using the two norm regularizer ‖.‖2
and hinge loss (i.e. SVM problem (1)) coincides with
SVMperf . It was shown that SVMperf and BMRM by far
outperform the decomposition methods like SVMlight on
large-scale problems. The rest of this section describes the
idea behind CPA for the standard SVM setting (1) in more
detail.

In CPA terminology, the original problem (1) is called the
master problem. Using the approach of (Teo et al., 2007)
one may define a reduced problem of (1) which reads

wt = argmin
w

Ft(w) :=
[1
2
‖w‖2 + CRt(w)

]
. (3)

Problem (3) is obtained from the master problem (1) by
substituting a piece-wise linear approximation Rt for the
risk R while leaving the regularization term unchanged,
i.e. only the complex part of the objective F is approxi-
mated. The approximation Rt is derived as follows. Since
the risk R is a convex function, it can be approximated at
any point w′ by a linear under estimator

R(w) ≥ R(w′) + 〈a′,w −w′〉 , ∀w ∈ Rn , (4)

where a′ is any subgradient of R at the point w′. We will
use a shortcut b′ = R(w′) − 〈a′,w′〉 to abbreviate (4) as
R(w) ≥ 〈a′,w〉+b′. In CPA terminology, 〈a′,w〉+b′ = 0

Optimized Cutting Plane Algorithm for Support Vector Machines

is called a cutting plane. A subgradient a′ of R at the point
w′ can be obtained as

a′ = − 1
m

m∑
i=1

πiyixi, πi =
{

1 if yi〈w′,xi〉 ≤ 1 ,
0 if yi〈w′,xi〉 > 1 .

(5)
To get a better approximation of the risk R than a single
cutting plane, one may use a collection of cutting planes
{〈ai,w〉 + bi = 0 | i = 1, . . . , t} at t distinct points
{w1, . . . ,wt} and take their point-wise maximum

Rt(w) = max
{
0, max

i=1,...,t

(
〈ai,w〉+ bi

)}
. (6)

The zero cutting plane is added to the maximization as the
risk R is always greater or equal to zero. It follows directly
from (4) that the approximation Rt lower bounds R and
thus also Ft lower bounds F .

To select the cutting planes, CPA starts from t = 0 (no
cutting plane) and then it iterates two steps:

1. Compute wt by solving the reduced problem (3),
which can be cast as a standard QP with t variables.

2. Add a new cutting plane (at+1, bt+1) to approximate
the risk R at the current solution wt.

A natural stopping condition for CPA is based on evaluat-
ing the ε-optimality condition F (wt)−Ft(wt) ≤ ε which,
if satisfied, guarantees that F (wt) − F (w∗) ≤ ε holds. 2

(Joachims, 2006) proved that for arbitrary ε > 0 CPA con-
verges to the ε-optimal solution after O(1

ε2) iterations, i.e.
it does not depend on the number of examples m. An im-
proved analysis of the CPA published recently (Teo et al.,
2007) shows that the number of iterations scales only with
O(1

ε). More important, in practice CPA usually requires
only tens of iterations to reach a sufficiently precise solu-
tion.

3. Optimized Cutting Plane Algorithm for
SVMs (OCAS)

We first point out a source of inefficiency appearing in CPA
and then propose a new method to alleviate the problem.

CPA selects a new cutting plane such that the reduced prob-
lem objective function Ft(wt) monotonically increases
with w.r.t. the number of iterations t. However, there is no
such guarantee for the master problem objective F (wt).
Even though it will ultimately converge to the minimum
F (w∗), its value can heavily fluctuate between iterations.
The reason for these fluctuations is the following. CPA se-
lects at each iteration t the cutting plane which perfectly

2An alternative stopping condition advocated in (Joachims,
2006) halts the algorithm when R(wt) − Rt(wt) ≤ ε̂. It can
be seen that both the stopping conditions become equivalent if we
set ε = Cε̂.

approximates the master objective F at the current solu-
tion wt. However, there is no guarantee that such cutting
plane will be an active constraint in the vicinity of the op-
timum w∗, nor must the new solution wt+1 of the reduced
problem improve the master objective. In fact it often oc-
curs that F (wt+1) > F (wt).

To speed up the convergence of CPA, we propose a new
method which we call the Optimized Cutting Plane Al-
gorithm for SVMs (OCAS). Unlike standard CPA, OCAS
aims at simultaneously optimizing the master and reduced
problem’s objective functions F and Ft, respectively. In
addition, OCAS tries to select such cutting planes that have
higher chance to actively contribute to the approximation of
the master objective function F around the optimum w∗. In
particular, we propose the following three changes to CPA.

Change 1 We maintain the best so far solution wb
t ob-

tained during the first t iterations, i.e. F (wb
1), . . . , F (wb

t)
forms a monotonically decreasing sequence.

Change 2 The new best so far solution wb
t is found by

searching along a line starting at the previous best solution
wb

t−1 crossing the reduced problem’s solution wt, i.e. ,

wb
t = min

k≥0
F (wb

t−1(1− k) + wtk) , (7)

which can be solved exactly in O(m log m) time (see Ap-
pendix A).

Change 3 The new cutting plane is selected to approxi-
mate the master objective F at a point wc

t which lies in a
vicinity of the best so far solution wb

t . In particular, the
point wc

t is computed as

wc
t = wb

t (1− λ) + wtλ , (8)

where λ ∈ (0, 1] is a prescribed parameter. Having the
point wc, the new cutting plane is computed using Equa-
tion (5) such that F (wc

t) = Ft+1(wc
t). Note that although

the theoretical bound on the number of iterations (see The-
orem 1) does not depend on λ its value has impact on the
convergence speed in practice. We found that the value
λ = 0.1 works consistently well in all experiments.

Algorithm 1 describes the proposed OCAS. Figure 1 shows
the impact of the proposed changes to the convergence.
OCAS generates a monotonically decreasing sequence of
master objective values F (wb

1), . . . , F (wb
t) and a mono-

tonically strictly increasing sequence of reduced objective
values F1(w1), . . . , Ft(wt). Similar to CPA, a natural
stopping condition for OCAS reads

F (wb
t)− Ft(wt) ≤ ε , (9)

where ε > 0 is a prescribed precision parameter. Satisfying
the condition (9) guarantees that F (wb

t) − F (w∗) ≤ ε
holds.

Optimized Cutting Plane Algorithm for Support Vector Machines

Algorithm 1 Optimized Cutting Plane Algorithm
1: Set t = 0 (i.e. there is no cutting plane at the begin-

ning) and wb
0 = 0.

2: repeat
3: Compute wt by solving the reduced problem (3).
4: Compute a new best so far solution wb

t using the
line-search (7).

5: Add a new cutting plane which approximates the
risk R at the point wc

t given by (8), i.e. ,

at+1 = − 1
m

∑m
i=1 πiyixi ,

bt+1 = R(wc
t)− 〈at+1,w

c
t〉 ,

where πi =
{

1 if yi〈wc
t ,xi〉 ≤ 1 ,

0 if yi〈wc
t ,xi〉 > 1 .

6: t := t + 1
7: until a stopping condition is satisfied

Theorem 1 For any ε > 0, C > 0, λ ∈ (0, 1], and any
training set {(x1, y1), . . . , (xm, ym)}, Algorithm 1 satis-
fies the stopping condition (9) after at most

max
{2C

ε
,
8C3Q2

ε2

}
, (10)

iterations where Q = maxi=1,...,m ‖xi‖.

Proof The proof is along the lines of the convergence
analysis of the standard CPA (Joachims, 2006). First, it can
be shown that violated condition (9) guarantees that adding
a new cutting plane (at, bt) leads to an improvement of
the reduced objective ∆t = Ft+1(wt+1) − Ft(wt) which
is not less than min

{
ε
2 , ε2

8Q2

}
. Second, by exploiting that

0 ≤ Ft(wt) ≤ F (w∗) and F (w∗) ≤ F (0) = C one can
conclude that the sum of improvements

∑t
i=0 ∆t cannot

be greater than C. Combining these two results gives im-
mediately the bound (10). For more details we refer to our
technical report (Franc & Sonnenburg, 2007).

OCAS
F (wbest

t
)

Ft(wt)

Ft(wt)

F (wt)
CPA

iterations t

102

103

104

105

0 10 20 30 40 50

Figure 1. Convergence behaviour of the standard CPA vs. OCAS.

The bound on the maximal number of iterations of OCAS
coincides with the bound for CPA given in (Joachims,
2006). Despite the same theoretical bounds, in practice
OCAS converges significantly faster compared to CPA
(cf. Table 2 in the experiments section).

3.1. Time Complexity and Parallelization

By Theorem 1 the number of iterations of OCAS does not
depend on the number of examples m. Hence the overall
time complexity is given by the effort required per itera-
tion which is O(mn + m log m) ≈ O(mn) (in practice
log(m) � n, where n is the dimensionality of the data).
The per-iteration complexity of the subtasks and the way
how they can be effectively parallelized is detailed below:
Output computation involves computation of the dot
products 〈wt,xi〉, i = 1, . . . ,m, which requires O(s)
time, where s equals the number of non-zero elements
in the training examples. Distributing the computation
equally to p processor leads to O(s

p) time.
Line-search The dominant part is sorting |K| numbers
(K ≤ m, see Appendix A for details) which can be done
in O(|K| log |K|). A speedup can be achieved by par-
allelizing the sorting function to using p processors, re-
ducing complexity to O

(|K| log |K|
p

)
. Note that our im-

plementation of OCAS uses quicksort, whose worst case
complexity is O(|K|2), although its expected run-time is
O(|K| log |K|).
Cutting plane computation The dominant part requires
computing the sum − 1

m

∑m
i=1 πiyixi which can be done

in O(sπ), where sπ is the number of non-zero elements in
the training examples for which πi is non-zero. Using p
processors leads to O(sπ

p) time.
Reduced problem The size of the reduced problem (3)
is upper bound by the number of iterations which is invari-
ant against the dataset size, hence it requires O(1) time.
Though solving the reduced problem cannot be easily par-
allelized, it does not constitute the bottleneck as the number
of iterations required in practice is small (cf. Table 2).

4. Experiments
We now compare current state-of-the-art SVM solvers
(SGD, Pegasos, SVMlight , SVMperf , BMRM3 on a va-
riety of datasets with the proposed method (OCAS) using
5 carefully crafted experiments measuring:

1. Training time and objective for optimal C
2. Speed of convergence (time vs. objective)
3. Time to perform a full model selection
4. Scalability w.r.t. dataset size
5. Effects of parallelization

To this end we implemented OCAS and the standard CPA4

in C. We use the very general compressed sparse column

3SGD version 1.1 (svmsgd2) http://leon.
bottou.org/projects/sgd, SVMlight 6.01 and
SVMperf 2.1 http://svmlight.joachims.org, pe-
gasos http://ttic.uchicago.edu/∼shai/code/,
BMRM version 0.01 http://users.rsise.anu.edu.
au/∼chteo/BMRM.html.

4To not measure implementation specific effects (solver, dot-
product computation) etc.

Optimized Cutting Plane Algorithm for Support Vector Machines

(CSC) representation to store the data. Here each element
is represented by an index and a value (each 64bit). To
solve the reduced problem (3), we use our implementation
of improved SMO (Fan et al., 2005).

4.1. Experimental Setup

The datasets used throughout the experiments are summa-
rized in Table 1. We augmented the Cov1, CCAT, As-
tro datasets from (Joachims, 2006) by the MNIST, a arti-
ficial dense and two larger bioinformatics splice datasets
for worm and human. The artificial dataset was generated

Dataset Examples Dim Sp Split
MNIST 70,000 784 19 77/09/14

Astro 99,757 62,369 0.08 43/05/52
Artificial 150,000 500 100 33/33/33

Cov1 581,012 54 22 81/09/10
CCAT 804,414 47,236 0.16 87/10/03
Worm 1,026,036 804 25 80/05/15

Human 15,028,326 564 25

Table 1. Datasets used in the experimental evaluation. Sp
denotes the average number of non-zero elements of a dataset
in percent. Split describes the size of the train/validation/test
sets in percent. Datasets are available from the following urls:
MNIST http://yann.lecun.com/exdb/mnist/, Cov1
http://kdd.ics.uci.edu/databases/covertype/
covertype.html, CCAT http://www.daviddlewis.
com/resources/testcollections/rcv1/, Worm
and Human http://www.fml.tuebingen.mpg.de/
raetsch/projects/lsmkl

from two Gaussians with different diagonal covarience ma-
trices of multiple scale. If not otherwise stated experiments
were performed on a 2.4GHz AMD Opteron Linux ma-
chine. We disabled the bias term in the comparison. As
stopping conditions we use the defaults: εlight = εgpdt =
0.001, εperf = 0.1 and εbmrm = 0.001. For OCAS we
used the same stopping condition which is implemented in
SVMperf , i.e., F (w)−Ft(w)

C ≤ εperf

100 = 10−3. Note that
these ε have a very different meaning denoting the maxi-
mum KKT violation for SVMlight , the maximum tolerated
violation of constraints for SVMperf and for the BMRM
the relative duality gap. For SGD we fix the number of it-
erations to 10 and for Pegasos we use 100/λ, as suggested
in (Shwartz et al., 2007). For the regularization parameter
C and λ we use the following relations: λ = 1/C, Cperf =
C/100, Cbmrm = C and Clight = Cm. Throughout ex-
periments we use C as a shortcut for Clight.

5

5The exact cmdlines are: svm perf learn -l 2 -m 0
-t 0 --b 0 -e 0.1 -c Cperf , pegasos -lambda
λ -iter 100/λ -k 1, svm learn -m 0 -t 0 -b 0
-e 1e-3 -c Clight, bmrm-train -r 1 -m 10000 -i
999999 -e 1e-3 -c Cbmrm, svmsgd2 -lambda λ
-epochs 10

Astro CCAT

10
−1

10
0

0

0.2

0.4

0.6

0.8

1

Time [s]

O
bj

ec
tiv

e
[(

ob
j−

m
in

)/
ob

j]

cpa
sgd
ocas

10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1

Time [s]

O
bj

ec
tiv

e
[(

ob
j−

m
in

)/
ob

j]

cpa
sgd
ocas

Covertype MNIST

10
0

10
2

0

0.2

0.4

0.6

0.8

1

Time [s]

O
bj

ec
tiv

e
[(

ob
j−

m
in

)/
ob

j]

cpa
sgd
ocas

10
0

10
2

0

0.2

0.4

0.6

0.8

1

Time [s]

O
bj

ec
tiv

e
[(

ob
j−

m
in

)/
ob

j]

cpa
sgd
ocas

Worm Artificial

10
0

10
2

10
4

0

0.2

0.4

0.6

0.8

1

Time [s]

O
bj

ec
tiv

e
[(

ob
j−

m
in

)/
ob

j]

cpa
sgd
ocas

10
0

10
2

0

0.2

0.4

0.6

0.8

1

Time [s]

O
bj

ec
tiv

e
[(

ob
j−

m
in

)/
ob

j]

cpa
sgd
ocas

Figure 2. Objective value vs. Training time of CPA (red), SGD
(green) and OCAS (blue) measured for a different number of
training examples.The dashed line shows the time required to run
SGD for 10 iterations. OCAS was stopped when the precision
fell below 10−6 or the training time for CPA was achieved. In
all cases OCAS achieves the minimal objective value and is even
on half of the datasets already in the beginning outperforming all
other methods including SGD.

4.2. Evaluation
In the following paragraphs we run and evaluate the afore-
mentioned experiments 1–5.

Training time and objective for optimal C We trained
all methods on all except the human splice dataset using the
training data and measured training time (in seconds) and
computed the unconstrained objective value F (w)

The obtained results are displayed in Table 2. The pro-
posed method – OCAS – consistently outperforms all its
competitors of the accurate solver category on all bench-
mark datasets in terms of training time while obtaining
a comparable (often the best) objective value. BMRM
and SVMperf implement the same CPA algorithm but due
to implementation specific details results can be different.
Our implementation of CPA gives very similar results (not
shown).6 Note that for SGD, Pegasos (and SVMperf2.0 –

6In contrast to SVMperf , BMRM and our implementation of

Optimized Cutting Plane Algorithm for Support Vector Machines

astro ccat cov1 mnist worm artificial
svmlight 2.0939e+03 8.1235e+04 2.5044e+06 6.7118e+05

2972 22 77429 5295 1027310 41531 622391 2719 -
svmperf 2.1180e+03 8.1744e+04 2.5063e+06 6.7245e+05 3.2224e+04 1.3186e+02

38 2 228 228 520 152 1295 228 2029 4436 709 162
bmrm 2.1152e+03 8.1682e+04 2.5060e+06 6.7250e+05

42 2 327 248 678 225 2318 4327 -
ocas 2.1103e+03 8.1462e+04 2.5045e+06 6.7158e+05 3.1920e+04 1.3172e+02

21 1 48 25 80 10 137 10 125 258 76 13
pegasos 2.1090e+03 8.1564e+04 2.5060e+06 Error 4.6212e+04 1.3120e+03

2689K 4 70M 127 470M 460 270M 647 82M 213 25K 1
sgd 2.2377e+03 8.2963e+04 2.6490e+06 1.3254e+06 2.1299e+05 1.8097e+02

10 1 10 4 10 1 10 1 10 9 10 2

Table 2. Comparison of OCAS against other SVM solvers. ”-” means not converged, blank not attempted. Shown in bold is the
unconstrained SVM objective value Eq. (1). The two numbers below the objective value denote the number of iterations (left) and
the training time in seconds (right). Lower timing and objective values mean “better.” All methods solve the unbiased problem. As
convergence criteria the standard settings described in Section 4.1 are used. On MNIST pegasos ran into numerical problems. OCAS
clearly outperforms all of its competitors in the accurate solver category by a large margin achieving similar and often lowest objective
value. The objective value obtained by SGD and Pegasos is often far away from the optimal solution, cf. text for a further discussion.

not shown) the objective value sometimes deviates signifi-
cantly from the true objective. As a result the learned clas-
sifier may differ substantially from the optimal parameter
w∗. However as training times for SGD are significantly
below all others it remains unclear whether SGD achieves
the same precision using less time when run for further it-
erations. An answer to this question is given in the next
paragraph.

Speed of convergence (time vs. objective) To address
this problem we re-ran the best methods CPA, OCAS and
SGD, recording intermediate progress, i.e. while optimiza-
tion record time and objective for several time points.
The results are shown in Figure 2. Ocas was stopped
when reaching the maximum time or a precision of 1 −
F (w∗)/F (w) ≤ 10−6 and was in all cases achieving the
minimum objective. In three of the six datasets OCAS not
only as expected at a later time point achieves the best ob-
jective but already from the very beginning. Further anal-
ysis made clear that OCAS wins over SGD in cases where
large C were used and thus the optimization problem is
more difficult. Still plain SGD outcompetes even CPA. One
may argue that practically the true objective is not the un-
constrained SVM-primal value (1), but the performance on
a validation set, i.e. optimization is stopped when the vali-
dation error won’t change.

One should however note that one in this case does not ob-
tain an SVM but some classifier instead. Then a compar-
ison should not be limited to SVM solvers but should be
open to any other large scale approach, like on-line algo-
rithms (e.g. perceptrons) too. We argue that to compare

CPA did not converge for large C on worm even after 5000 itera-
tions. Most likely the core solver of SVMperf is more robust.

SVM solvers in a fair way one needs to compare objective
values. As it is still interesting to see how the methods
perform w.r.t. classification performance we analyze them
under this criterion in the next paragraph.

Time to perform a full model selection When using
SVMs in practice, their C parameter needs to be tuned in
model selection. We therefore train all methods using dif-
ferent settings7 for C on the training part of all datasets,
evaluate them on the validation set and choose the best
model to do predictions on the test set. As performance
measure we use the area under the receiver operator char-
acteristic curve (auROC) (Fawcett, 2003). Again among
the accurate methods OCAS outperforms its competitors
by a large margin, followed by SVMperf . Note that for all
accurate methods the performance is very similar and has
little variance. Except for the artificial dataset plain SGD
is clearly fastest while achieving a similar accuracy. How-
ever the optimal parameter settings for accurate SVMs and
SGD are different. Accurate SVM solvers use a larger C
constant than SGD. For lower C the objective function is
dominated by the regularization term ‖w‖ . A potential ex-
planation is that SGDs update rule puts more emphasize on
the regularization term and SGD when not run for a large
number of iterations does imply early stopping.

Scalability w.r.t. Dataset Size In this section, we inves-
tigate how computational time of OCAS, CPA and SGD
scales with the number of examples on the worm splice
dataset, for sizes 100 to 1, 026, 036. We again use our im-
plementation of CPA that shares essential sub-routines with
OCAS. Results are shown and discussed in Figure 3.

7For Worm and Artificial we used C =
0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, for CCAT, Astro, Cov1
C = 0.1, 0.5, 1, 5, 10 and for MNIST C = 1, 5, 10, 50, 100.

Optimized Cutting Plane Algorithm for Support Vector Machines

astro ccat cov1 mnist worm artificial
avg svm perf 98.15± 0.00 98.51± 0.01 83.92± 0.01 95.86± 0.01 99.45± 0.00 86.38± 0.02

svmlight 1 152 1 124700 10 282703 10 9247 -
svmperf 1 13 1 1750 5 781 10 887 1 22983 0.005 24520

bmrm 1 17 1 2735 10 1562 10 20278 -
ocas 1 4 1 163 50 51 10 35 0.1 1438 0.005 6740

pegasos 98.15 98.51 83.89 95.84 99.27 78.35
1 59 1 2031 5 731 5 2125 5 1438 5 201

sgd 98.13 98.52 83.88 95.71 99.43 80.88
0.5 1 1 20 1 5 1 3 0.005 69 0.005 7

Table 3. Comparison of OCAS against other SVM solvers. ”-” means not converged, blank not attempted. Shown in bold is the area
under the receiver operator characteristic curve (auROC) obtained for the best model obtained via model selection over a wide range of
regularization constants C. In each cell, numbers on the left denote the optimal C, numbers on the right the training time in seconds to
perform the whole model selection. As there is little variance, for accurate SVM solvers only the mean and standard deviation of the
auROC are shown. SGD is clearly fastest achieving similar performance for all except for the artificial dataset. However often a smaller
C than the ones chosen by accurate SVMs is selected — an indication that the learned decision function is only remotely SVM-like.
Among the accurate solvers OCAS clearly outperforms its competitors. It should be noted that training times for all accurate methods
are dominated by training for large C (see Table 2 for training times for the optimal C). For further discussion see the text.

10
2

10
4

10
6

10
−4

10
−2

10
0

10
2

10
4

T
im

e
[s

]

Dataset Size

cpa
sgd
ocas
linear

Figure 3. This figure displays how the methods scale with dataset
size on the worm splice dataset. The slope of the “lines” in this
figure denotes the exponent e in O(me), where the black line de-
notes linear effort O(m). Both OCAS and SGD scale about lin-
early. Note that SGD is much faster (as it runs for a fixed number
of iterations and thus does early stopping).

Effects of Parallelization As OCAS training times are
very low on the above datasets, we also apply OCAS to
the 15 million human splice dataset. Using a 2.4GHz 16-
Core AMD Opteron Linux machine we run OCAS using
C = 0.0001 on 1 to 16 CPUs and show the accumulated
times for each of the subtasks, the total training time and
the achieved speedup w.r.t. the single CPU algorithm in
Table 4. Also shown is the time accumulated for each of
the threads. As can be seen — except for the line search
— computations distribute nicely. Using 8 CPU cores the
speedup saturates at a factor of 4.5, most likely as memory
access becomes the bottleneck (for 8 CPUs output compu-
tation creates a load of 28GB/s just on memory reads).

5. Conclusions
We have developed a new Linear SVM solver called
OCAS, which outperforms current state of the art SVM
solvers by several orders of magnitude. OCAS even in

CPUs 1 2 4 8 16
speedup 1 1.77 3.09 4.5 4.6
line search (s) 238 184 178 139 117
at (s) 270 155 80 49 45
output (s) 2476 1300 640 397 410
total (s) 3087 1742 998 684 671

Table 4. Speedups due to parallelizing OCAS achieved on 15 mil-
lion human splice dataset.

the early optimization steps shows often faster convergence
than the so far in this domain dominating approximative
methods. By parallelizing the subtasks of the algorithm,
OCAS gained additional speedups of factors up to 4.6 on a
multi-core multiprocessor machine. Using OCAS we were
able to train on a dataset of size 15 million examples (it-
self about 32GB in size) in just 671 seconds. As exten-
sions to one and multi-class are straight forward, we plan
to implement them in the near future. Furthermore OCAS
can be extended to work with a bias term. Finally it will
be future work to investigate how the kernel framework
can be incorporated into OCAS and how the O(1

ε) result
of (Teo et al., 2007) can be applied to OCAS. An imple-
mentation of OCAS is available within the shogun toolbox
http://www.shogun-toolbox.org and as a sepa-
rate library from http://ida.first.fraunhofer.
de/∼franc/ocas.

Acknowledgements
The authors gratefully acknowledge partial support from
the PASCAL Network of Excellence (EU 506778). VF was
supported by Marie Curie Intra-European Fellowship grant
SCOLES (MEIF-CT-2006-042107). We thank A. Zien,
G. Rätsch and G. Blanchard for great discussions.

Optimized Cutting Plane Algorithm for Support Vector Machines

References
Bottou, L., & Bousquet, O. (2008). The tradeoffs of large scale

learning. In NIPS 20. MIT Press.

Chang, C.-C., & Lin, C.-J. (2001). LIBSVM: a library for svms.
http://www.csie.ntu.edu.tw/∼cjlin/libsvm.

Chapelle, O. (2007). Training a Support Vector Machine in the
Primal. Neural Comp., 19, 1155–1178.

Cortes, C., & Vapnik, V. (1995). Support-vector networks. Ma-
chine Learning, 20, 273–297.

Cristianini, N., & Shwawe-Taylor, J. (2000). An introduction to
support vector machines. Cambridge, UK: CUP.

Fan, R.-E., Chen, P.-H., & Lin, C.-J. (2005). Working set selection
using second order information for training svm. Journal of
Machine Learning Research, 6, 1889–1918.

Fawcett, T. (2003). Roc graphs: Notes and practical consid-
erations for data mining researchers. Technical Report HPL-
2003-4). HP Laboratories, Palo Alto, CA, USA.

Franc, V., & Sonnenburg, S. (2007). Optimized cutting plane al-
gorithm for SVMs. Research Report; Electronic Publication 1).
Fraunhofer Institute FIRST.

Joachims, T. (1999). Making large–scale SVM learning practical.
Advances in Kernel Methods — Support Vector Learning (pp.
169–184). Cambridge, MA, USA: MIT Press.

Joachims, T. (2006). Training linear svms in linear time. KDD’06.

Lin, C.-J., Weng, R. C., & Keerthi, S. S. (2007). Trust region
newton methods for large-scale logistic regression. ICML ’07
(pp. 561 – 568). ACM New York.

Shwartz, S.-S., Singer, Y., & Srebro, N. (2007). Pegasos: Primal
estimated sub-gradient solver for svm. ICML ’07 (pp. 807–
814). ACM Press.

Sindhwani, V., & Keerthi, S.-S. (2007). Newton methods for fast
solution of semi-supervised linear svms. In Large scale kernel
machines. MIT Press.

Teo, C. H., Le, Q., Smola, A., & Vishwanathan, S. (2007). A scal-
able modular convex solver for regularized risk minimization.
KDD’07.

Zanni, L., Serafini, T., & Zanghirati, G. (2006). Parallel software
for training. JMLR, 7, 1467–1492.

A. Computing Line-search efficiently
The line-search (7) is an essential procedure of OCAS
which is called at every iteration. We show that the line-
search can be solved exactly in O(m log m) time. First,
we introduce a more compact notation for the objective
function of the line-search problem (7) F (wb

t−1(1 − k) +
wtk) by G(k) = g0(k) +

∑m
i=1 gi(k) where g0(k) =

1
2k2A0 + kB0 + C0, gi(k) = max{0, kBi + Ci}, A0 =
‖wb

t−1 − wt‖2, B0 = 〈wb
t−1,wt − wb

t−1〉 , C0 =
1
2
‖wb

t−1‖2 , Bi =
C

m
yi〈xi,w

b
t−1−wt〉 and Ci =

C

m
(1−

yi〈xi,w
b
t−1〉). Hence the line-search (7) involves solving

k∗ = argmink≥0 G(k) and computing wb
t = wb

t−1(1 −
k∗) + wtk

∗. As function G is convex the unconstrained
minimum of G is attained at the point k∗ at which the sub-
differential ∂G(k) contains zero, i.e. 0 ∈ ∂G(k∗). The
subdifferential of G is ∂G(k) = kA0 +B0 +

∑m
i=1 ∂gi(k),

∂gi(k) =

 0 if kBi + Ci < 0 ,
Bi if kBi + Ci > 0 ,

[0, Bi] if kBi + Ci = 0 .

Note that the subdifferential is not a function as there ex-

ki1

ki3
ki2

= k∗

∂G(k)

|Bi2
|

|Bi1
|

|Bi3
|

0

k

Figure 4. Illustration of the subgradient ∂G(k) of the objective
function G(k) minimized in the line-search.

ist k for which ∂G(k) is an interval. The first term of
the subdifferential ∂G(k) is an ascending linear function
kA0 + B0 since A0 must be greater than zero (A0 is zero
only if the algorithm has converged but then the line-search
is not invoked). The term ∂gi(k) is either constantly zero,
if Bi = 0, or it is a step-like jump whose value changes at
the point ki = −Ci

Bi
. The value of ∂gi(k) w.r.t. k is sum-

marized in Table 5. Hence the subdifferential ∂G(k) is a

k < ki k = ki k > ki

Bi = 0 0 0 0
Bi < 0 Bi [Bi, 0] 0
Bi > 0 0 [0, Bi] Bi

Table 5. The value of ∂gi(k) with respect to k.

monotonically increasing function as is illustrated in Fig-
ure 4. To solve k∗ = argmink≥0 G(k) we proceed as fol-
lows: If max(∂G(0)) is strictly greater than zero then the
unconstrained minimum argmink G(k) is at a point less or
equal to 0. Thus the constrained minimum is attained at the
point k∗ = 0.

If max(∂G(0)) is less then zero then the optimum k∗ cor-
responds to the unconstrained optimum argmink G(k) at-
tained at the intersection between the graph of ∂G(k) and
the x-axis. This point can be found efficiently by sorting
K = {ki | ki > 0, i = 1, . . . ,m} and checking the condi-
tion 0 ∈ G(k) for k ∈ K and for k in the intervals which
split the domain (0,∞) in the points K. These computa-
tion are dominated by sorting the numbers K which takes
O(|K| log |K|).

