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Abstract

Reinforcement learning (RL) methods based
on least-squares temporal difference (LSTD)
have been developed recently and have shown
good practical performance. However, the
quality of their estimation has not been well
elucidated. In this article, we discuss LSTD-
based policy evaluation from the new view-
point of semiparametric statistical inference.
In fact, the estimator can be obtained from a
particular estimating function which guaran-
tees its convergence to the true value asymp-
totically, without specifying a model of the
environment. Based on these observations,
we 1) analyze the asymptotic variance of an
LSTD-based estimator, 2) derive the opti-
mal estimating function with the minimum
asymptotic estimation variance, and 3) derive
a suboptimal estimator to reduce the com-
putational burden in obtaining the optimal
estimating function.

1. Introduction

Reinforcement learning (RL) is a machine learning
framework based on reward-related interactions with
environments (Sutton & Barto, 1998). In many RL
methods, policy evaluation, in which a value function
is estimated from sample trajectories, is an important
step for improving a current policy. Since RL problems
often involve high-dimensional state spaces, the value
functions are often approximated by low-dimensional
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parametric models. Linear function approximation
has mostly been used due to their simplicity and com-
putational convenience.

To estimate the value function with a linear model,
an online procedure called temporal difference (TD)
learning (Sutton & Barto, 1998) and a batch proce-
dure called least-squares temporal difference (LSTD)
learning are widely used (Bradtke & Barto, 1996).
LSTD can achieve fast learning, because it uses en-
tire sample trajectories simultaneously. Recently, ef-
ficient procedures for policy improvement combined
with policy evaluation by LSTD have been developed,
and have shown good performance in realistic prob-
lems. For example, the least squares policy itera-
tion (LSPI) method maximizes the Q-function esti-
mated by LSTD (Lagoudakis & Parr, 2003), and the
natural actor-critic (NAC) algorithm uses the natu-
ral policy gradient obtained by LSTD (Peters et al.,
2005). Although variance reduction techniques have
been proposed for other RL algorithms (Greensmith
et al., 2004; Mannor et al., 2007), the important issue
of how to evaluate and reduce the estimation variance
of LSTD learning remains unresolved.

In this article, we discuss LSTD-based policy evalua-
tion in the framework of semiparmetric statistical in-
ference, which is new to the RL field. Estimation of
linearly-represented value functions can be formulated
as a semiparametric inference problem, where the sta-
tistical model includes not only the parameters of in-
terest but also additional nuisance parameters with in-
numerable degrees of freedom (Godambe, 1991; Amari
& Kawanabe, 1997; Bickel et al., 1998). We approach
this problem by using estimating functions, which pro-
vide a well-established method for semiparametric es-
timation (Godambe, 1991). We then show that the in-
strumental variable method, a technique used in LSTD
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learning, can be constructed from an estimating func-
tion which guarantees its consistency (asymptotic lack
of bias) by definition.

As the main results, we show the asymptotic esti-
mation variance in a general instrumental variable
method (Lemma 2) and the optimal estimating func-
tion that yields the minimum asymptotic variance of
the estimation (Theorem 1). We also derive a sub-
optimal instrumental variable, based on the idea of
the c-estimator (Amari & Kawanabe, 1997), to reduce
the computational difficulty of estimating the optimal
instrumental variable (Theorem 2). As a proof of con-
cept, we compare the mean squared error (MSE) of
our new estimators with that of LSTD on a simple
example of the Markov decision process (MDP).

2. Background

2.1. MDPs and Policy Evaluation

RL is an approach to finding an optimal policy for
sequential decision-making in an unknown environ-
ment. We consider a finite MDP, which is defined as
a quadruple (S,A, p, r): S is a finite set of states; A
is a finite set of actions; p(st+1|st, at) is the transition
probability to a next state st+1 when taking an action
at at state st; and r(st, at, st+1) is a reward received
with the state transition. Let π(st, at) = p(at|st) be a
stochastic policy that the agent follows. We introduce
the following assumption concerning the MDP.

Assumption 1. An MDP has a stationary state dis-
tribution dπ(s) = p(s) under the policy π(st, at).

There are two major choices in definition of the state
value function: discounted reward accumulation and
average reward (Bertsekas & Tsitsiklis, 1996). With
the former choice, the value function is defined as

V π(s) :=

∞
∑

t=0

Eπ
[

γtrt+1|s0 = s
]

, (1)

where Eπ[·|s0 = s] is the expectation with respect
to the sample trajectory conditioned on s0 = s and
rt+1 := r(st, at, st+1). γ ∈ [0, 1) is the discount factor.
With the latter choice, on the other hand, the value
function is defined as

V π(s) :=

∞
∑

t=0

Eπ [rt+1 − r̄|s0 = s] , (2)

where r̄ :=
∑

s∈S

∑

a∈A

∑

s′∈S

dπ(s)π(s, a)p(s′|s, a)r(s, a, s′)

denotes the average reward over the stationary distri-
bution.

According to the Bellman equation, eq. (2) can be

rewritten as

V π(st) =
∑

st+1∈S

p(st+1|st)r̄(st, st+1)− r̄

+
∑

st+1∈S

p(st+1|st)V
π(st+1), (3)

where
p(st+1|st) :=

∑

at∈A

π(st, at)p(st+1|st, at) and

r̄(st, st+1) :=

P

at∈A

π(st,at)p(st+1|st,at)r(st,at,st+1)

p(st+1|st)
.

Throughout this article, we assume that the linear
function approximation is faithful, and discuss only
asymptotic estimation variance. (In general cases,
bias becomes non-negligible and selection of basis
functions is more important.)

Assumption 2. The value function can be repre-
sented as a linear function of some features:

V π(st) = φ(st)
⊤θ = φ⊤

t θ, (4)

where φ(s) : S → Rm is a feature vector and θ ∈ Rm

is a parameter vector.

Here, the symbol ⊤ denotes a transpose and the di-
mensionality of the feature vector m is smaller than the
number of states |S|. Substituting eq. (4) for eq. (3),
we obtain the following equation







φt −
∑

st+1∈S

p(st+1|st)φt+1







⊤

θ =

∑

st+1∈S

p(st+1|st)r̄(st, st+1)− r̄. (5)

When the matrix

E
π

" 

φt−
P

st+1∈S

p(st+1|st)φt+1

! 

φt−
P

st+1∈S

p(st+1|st)φt+1

!

⊤
#

is non-singular and p(st+1|st) is known, we can easily
obtain the parameter θ. However, since p(st+1|st)
is unknown in normal RL settings, we have to
estimate this parameter from the sample trajectory
{s0, a0, r1, · · · , sN−1, aN−1, rN} alone, instead of
using it directly.

Eq. (5) can be rewritten as

yt = x⊤
t θ + ǫt, (6)

where yt, xt and ǫt are defined as

yt := rt+1 − r̄, xt := φt − φt+1

ǫt :=







φt+1 −
∑

st+1∈S

p(st+1|st)φt+1







⊤

θ

+ rt+1 −
∑

st+1∈S

p(st+1|st)r̄(st, st+1). (7)
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When we use the discounted reward accumulation for
the value function, eq. (6) also holds with

yt := rt+1, xt := φt − γφt+1

ǫt := γ







φt+1 −
∑

st+1∈S

p(st+1|st)φt+1







⊤

θ

+ rt+1 −
∑

st+1∈S

p(st+1|st)r̄(st, st+1). (8)

Because Eπ[ǫt] = 0, eq. (6) can be seen as a linear
regression problem, where x, y and ǫ are an input, an
output and observation noise, respectively (Bradtke
& Barto, 1996). Note that

Eπ[ǫtg(st, st−1, · · · , s0)] = 0 (9)

holds for any function g(st, st−1, · · · , s0) because of
the Markov property. The regression problem (6) has
an undesirable property, however, which is known as
an “error-in-variable problem” (Young, 1984): the in-
put xt and observation noise variables ǫt are mutually
dependent.

It is not easy to solve such an error-in-variable problem
in a rigorous manner; the simple least-squares method
lacks consistency. Therefore, LSTD learning has used
the instrumental variable method (Bradtke & Barto,
1996), a standard method to solve the error-in-variable
problem that employs an “instrumental variable” to
remove the effects of correlation between the input and
the observation noise. When
X = [x0,x1, · · · ,xN−1] and y = [y0, y1, · · · , yN−1]

⊤,
the estimator of the instrumental variable method is
given by

θ̂ = [ZX⊤]−1[Zy], (10)

where Z = [z0,z1, · · · ,zN−1], and zt is an instrumen-
tal variable that is assumed to be correlated with the
input xt but uncorrelated with the observation noise
ǫt.

2.2. Semiparametric Model and Estimating

Functions

In the error-in-variable problem, if it is possible to as-
sume a reasonable model with a small number of pa-
rameters on the joint input-output probability p(x, y),
a proper estimator with consistency can be obtained
by the maximum likelihood method. Since the transi-
tion probability p(st+1|st) is unknown and usually dif-
ficult to estimate, it is practically impossible to con-
struct such a parametric model. Let kx and kǫ be
parameters which characterize the input distribution

p(x) and the conditional distribution p(y|x) of output
y given x, respectively. Then, the joint distribution
becomes

p(x, y;θ,kx,kǫ) = p(y|x;θ,kǫ)p(x;kx). (11)

We would like to estimate the parameter θ represent-
ing the value function in the presence of the extra un-
knowns kx and kǫ, which can have innumerable de-
grees of freedom. Statistical models which contain
such (possibly infinite-dimensional) nuisance param-
eters in addition to parameters of interest are called
semiparametric (Bickel et al., 1998). In semiparamet-
ric inference, one established way of estimating param-
eters is to employ an estimating function (Godambe,
1991), which can give a consistent estimator of θ with-
out estimation of the nuisance parameters kx and kǫ.
Now we begin with a short overview of the estimating
function in the simple i.i.d. case, and then discuss the
Markov chain case.

We consider a general semiparametric model p(x|θ,κ),
where θ is an m-dimensional parameter and κ is a
nuisance parameter. An m-dimensional vector func-
tion f(x;θ) is called an estimating function when it
satisfies the following conditions for any θ, κ;

E[f(x;θ)|θ,κ] = 0 (12)

det

∣

∣

∣

∣

E

[

∂

∂θ
f(x;θ)

∣

∣

∣
θ,κ

]∣

∣

∣

∣

6= 0 (13)

E
[

||f(x;θ)||2|θ,κ
]

<∞, (14)

where E[·|θ,κ] denotes the expectation with respect
to x, which obeys the distribution p(x;θ,κ). The
notations det | · | and || · || denote the determinant
and the Euclidean norm, respectively. Consider that
i.i.d. samples {x0,x1, · · · ,xN−1} are obtained from
the true model p(x;θ = θ∗,κ = κ∗) = p(x;θ∗,κ∗)
for the observed trajectory. If there is an estimating
function f , by solving the estimating equation

N−1
∑

t=0

f(xt; θ̂) = 0, (15)

we can obtain an estimator θ̂ with good asymptotic
properties. A solution of eq. (15) is called an “M-
estimator” in statistics; the M-estimator is consistent,
i.e., converges to the true parameter θ∗ regardless of
the true nuisance parameter κ∗ when the sample size
N reaches infinity. In addition, the asymptotic vari-
ance AV[θ̂] is given by

AV[θ̂] = E[(θ̂ − θ∗)(θ̂ − θ∗)⊤] =
1

N
A−1MA−⊤,

(16)
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where A = E
[

∂
∂θ

f(x;θ)|θ∗,κ∗
]

and M = E
[

f(x;θ)f⊤(x;θ)|θ∗,κ∗
]

. The symbol
−⊤ denotes transpose of the inverse matrix. We
omit the time index t, unless it is necessary to clar-
ify. Note that the asymptotic variance AV depends on
the true parameters, θ∗ and κ∗, not on the samples
{x0,x1, · · · ,xN−1}.

The notion of the estimating function can be ex-
tended to cases in which samples are given by a certain
stochastic process (Godambe, 1985). In the semipara-
metric model for policy evaluation, under Assump-
tion 1, there exist sufficient conditions of estimating
functions which are almost the same as eqs. (12) - (14).
The instrumental variable method is a type of esti-
mating function method for semiparametric problems
where the unknown distribution is given by eq. (11).

Lemma 1. Suppose {xt, yt} is given by eq. (7) or (8),
and zt is given by a function of {st, · · · , st−T }. If
Eπ[ztx

⊤
t ] is nonsingular and Eπ

[

||zt(x
⊤
t θ − yt)||

2
]

is
finite, then

zt(x
⊤
t θ − yt) (17)

is an estimating function for the parameter θ. There-
fore, the estimating equation is given by

N−1
∑

t=0

zt(x
⊤
t θ − yt) = 0. (18)

Proof For all t, the conditions corresponding to (13)
and (14) are satisfied by the assumptions, and the con-
dition (12) is satisfied as
Eπ[zt(x

⊤
t θ − yt)] = Eπ[ztǫt] = 0 from the property in

eq. (9). (Q.E.D.)

LSTD is specifically an instrumental variable method
in which the feature vector zt = φ(st) = φt is used as
an instrumental variable:

fLSTD = φt(x
⊤
t θ − yt). (19)

The solution of the estimating equation is an M-
estimator, and its asymptotic variance is given as fol-
lows.

Lemma 2. Let zt be a function of {st, ..., st−T } sat-
isfying the two conditions in Lemma 1 and ǫ∗t =
x⊤

t θ∗ − yt be the residual for the true parameter θ∗.

Then, the solution θ̂ of the estimating equation (18)
has the asymptotic variance

AV[θ̂] =
1

N
A−1

IV MIVA−⊤
IV , (20)

where AIV = Ed[ztx
⊤
t ], MIV = Ed[(ǫ

∗
t )

2ztz
⊤
t ]. Ed[·]

denotes the expectation when the sample trajectory
starts from the stationary distribution dπ(s0).

1

Proof The estimating equation (18) can be ex-
pressed as

Zy = ZX⊤θ̂ (21)

where Z = [z0, · · · ,zN−1], X = [x0, · · · ,xN−1], y =
[y0, · · · , yN−1]

⊤. On the other hand, from eq. (6), the
left hand side of eq. (21) is equal to ZX⊤θ∗ +ZX⊤ǫ,
where ǫ = [ǫ∗0, · · · , ǫ

∗
N−1]

⊤. Thus the asymptotic vari-

ance of the estimator θ̂ is obtained as

Eπ[(θ̂ − θ∗)(θ̂ − θ∗)⊤] = Eπ[(ZX⊤)−1Zǫǫ⊤Z⊤(XZ⊤)−1]

N→∞
−→ A−1

IV

1

N2
Eπ[Zǫǫ⊤Z⊤]A−⊤

IV

where we used the fact that the matrix ZX⊤ has the
limit

1

N
(ZX⊤) =

1

N

N−1
∑

t=0

ztx
⊤
t

N→∞
−→ AIV.

Also, the matrix Eπ[Zǫǫ⊤Z⊤] has the following limit:

1

N
Eπ[Zǫǫ⊤Z⊤] =

1

N

N−1
∑

t=0

Eπ[(ǫ∗t )
2ztz

⊤
t ]

N→∞
−→ MIV,

where we used the property in eq. (9). Therefore, we
have

Eπ[(θ̂ − θ∗)(θ̂ − θ∗)⊤]
N→∞
−→

1

N
A−1

IV MIVA−⊤
IV .

(Q.E.D.)

To summarize, if we have an instrumental variable
which satisfies the assumptions in Lemmas 1 and 2,
we can obtain an M-estimator from the estimating
equation (18) with the asymptotic variance eq. (20).
When more than one instrumental variable exists, it
is appropriate to choose the one whose estimator has
the minimum asymptotic variance.

3. Main Results

In this section, we show that estimating functions for
the semiparametric model of policy evaluation are lim-
ited to the type of equation used in the instrumental
variable method. Furthermore, we derive the optimal

1We remark that the definitions of AIV and MIV do not
depend on the t. Nevertheless, we keep the time index t

for clarification.
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instrumental variable having the minimum asymptotic
variance of the estimation.

We first remark on the invariance property of the in-
strumental variable method.

Lemma 3. The value function estimation
V̂ (st) = φ⊤

t θ̂ = φ⊤
t [ZX⊤]−1[Zy] is invariant with

respect to the application of any regular linear trans-
formation to either the instrumental variable zt or the
basis functions φt.

Proof Assume that the instrumental variable and
the basis functions are both transformed by any
regular matrices Wz and Wφ as z′

t = Wzzt and
φ′

t = Wφφt. Noting that the linear transformation
of φt yields the linear transformation of the input
x′

t = Wφxt, the estimator of the instrumental vari-
able method given by eq. (10) becomes

θ̂′ = [Z′(X ′)⊤]−1[Z′y] = W−1
φ θ̂. This means that

the estimated value function is invariant as
(φ′

t)
⊤θ̂′ = φ⊤

t θ̂. (Q.E.D.)

When the basis functions span over the whole space of
functions of the state, any set of basis functions can
be represented by applying a linear transformation to
another set of basis functions. This observation leads
to the following Corollary.

Corollary 1. When the basis functions φt span the
whole space of functions of the state, the value function
estimation is invariant with respect to the choice of
basis functions and of the instrumental variable.

An instrumental variable may depend not only on
the current state st, but also on the previous states
{st−1, · · · , st−T }, because such an instrumental vari-
able does not violate the condition, cov[zt, ǫt] = 0.
However, we do not need to consider such instrumen-
tal variables, as the following Lemma shows.

Lemma 4. Let zt (st, · · · , st−T ) be any instrumental
variable depending on the current and previous states
which satisfies the conditions in Lemmas 1 and 2.
Then, there is necessarily an instrumental variable de-
pending only on the current state whose corresponding
estimator has equal or minimum asymptotic variance.

Proof We show that the conditional expectation
z̃t = Eπ[zt|st] which depends only on the current state
st, gives an equally good or better estimator. The
matrices in the asymptotic variance, eq. (20), can be
calculated as

Az = Ed

[

z̃tx
⊤
t

]

+ Ed

[

(z̃t − zt)x
⊤
t

]

= Az̃

Mz = Ed[(ǫ
∗
t )

2(z̃t + zt − z̃t)(z̃t + zt − z̃t)
⊤]

= Mz̃ + Ed[(ǫ
∗
t )

2(zt − z̃t)(zt − z̃t)
⊤],

where we have used eq. (9). This implies that

AV[θ̂z] =
1

N
A−1

z MzA−⊤
z �

1

N
A−1

z̃ Mz̃A−⊤
z̃ = AV[θ̂z̃].

(Q.E.D.)

Here, the inequality � denotes the semipositive def-
initeness of the subtraction. Now, we consider the
general form of estimating functions for inference of
the value function. In the following, we consider only
‘admissible’ estimating functions. More precisely, we
discard ‘inadmissible’ estimating functions whose esti-
mators are always inferior to those of other estimat-
ing functions in the sense of asymptotic variance. To
simplify analysis, we only consider the limited set of
estimating functions which are defined on a one-step
sample {s, a, s′}.

Proposition 1. For the semiparametric model of
eqs. (6), (7) or eqs. (6), (8), all admissible estimating
functions of only the one-step sample {s, a, s′} must
have the form of f = z(y − x⊤θ), where z is any
function which does not depend on s′ and satisfies the
assumption in Lemma 1.

Proof Due to space limitation, we will just outline
the proof. To be an estimating function, the function
f must satisfy
Ed[f ]=

∑

s∈S

dπ(s)
∑

s′∈S

∑

a∈A

p(s′|s, a)π(s, a)f(s, a, s′) = 0.

Because we can prove that the stationary distribution
dπ(s) takes any probability vector,

∑

s∈S

dπ(s)v(s) = 0

implies that v(s) = 0 for any state s, where
v(s) :=

∑

s′∈S

∑

a∈A

p(s′|s, a)π(s, a)f(s, a, s′). Further-

more, the Bellman equation (6) holds, whatever the
p(s′|s, a) is. To fulfil v = 0, f must have the
form of f = z(y − x⊤θ) + h, where z does not de-
pend on s′ or a, and h is any function that satisfies
∑

a∈A

π(s, a)h(s, a, s′) = 0. However, the addition of

such a function h necessarily enlarges the asymptotic
variance of the estimation. Therefore, the admissi-
ble estimating function is restricted to the form of
f = z(y − x⊤θ). (Q.E.D)

We are currently working on the conjecture that
whether Proposition 1 can be extended to general es-
timating functions depend on all previous states and
actions. If this is true, from Lemma 4, it is sufficient to
consider the instrumental variable method with zt de-
pending only on the current state st for the semipara-
metric inference problem. Therefore, we next discuss
the optimal instrument variable of this type in terms of
asymptotic variance, which corresponds to the optimal
estimating function.
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Algorithm 1 The pseudo code of gLSTD.

gLSTD(D, φ)
// D = {s0, r1, · · · , sN−1, rN}: Sample sequence
// φ: Basis functions
// Calculate the initial parameter and its residual

θ̂0 ←

[

N−1
∑

t=0
φtx

⊤
t

]−1 [

N−1
∑

t=0
φtyt

]

ǫ̂t ← x⊤
t θ̂0 − yt

// Calculate the estimator ˜Eπ[(ǫ̂t)2|st], ˜Eπ[xt|st]
// of the conditional expectations
// and construct the instrumental variable

ẑt ← ˜Eπ[(ǫ̂t)2|st]−1 ˜Eπ[xt|st]
// Calculate the parameter

θ̂g ←

[

N−1
∑

t=0
ẑtx

⊤
t

]−1 [

N−1
∑

t=0
ẑtyt

]

Return θ̂g

Theorem 1. The optimal instrumental variable gives
the minimum asymptotic variance

z∗
t =



















Eπ
[

(ǫ∗t )
2|st

]−1
(φt − γEπ[φt+1|st])

(discounted reward accumulation)

Eπ
[

(ǫ∗t )
2|st

]−1
(φt − Eπ[φt+1|st])

(average reward).

(22)

The proof is given in Appendix A. Note that the def-
inition of the optimal instrumental variable includes
both the residual ǫ∗t and the conditional expectations
Eπ[φt+1|st] and Eπ[(ǫ∗t )

2|st]. To make this estima-
tor practical, we replace the residual ǫ∗t with that of
the LSTD estimator, and approximate the expecta-
tion, Eπ[φt+1|st] and Eπ[(ǫ∗t )

2|st], by using function
approximation. We call this procedure “gLSTD learn-
ing” (see Algorithm 1 for its pseudo code).

To avoid estimating the functions depending on the
current state, Eπ[φt+1|st] and Eπ[(ǫ∗t )

2|st], which ap-
pear in the instrumental variable, we simply replace
them by constants. When z is an instrumental vari-
able, addition of any constant value to z, z′ = z + c,
leads to another valid instrumental variable; because
of Lemma 1, it is easily confirmed that
fc = (zt + c)(x⊤

t θ − yt) is an estimating function.
Therefore, obtaining the optimal constant c yields a
suboptimal instrumental variable within instrumental
variables produced by constant shifts.

Theorem 2. The optimal shift is given by

c∗ := −
Ed[(ǫ

∗
t )

2zt]− Ed[(ǫ
∗
t )

2ztz
⊤
t ]Ed[xtz

⊤
t ]−1Ed[xt]

Ed[(ǫ∗t )
2]− Ed[(ǫ∗t )

2z⊤
t ]Ed[xtz

⊤
t ]−1Ed[xt]

.

(23)

Algorithm 2 The pseudo code of LSTDc

LSTDc(D, φ)
// D = {s0, r1, · · · , sN−1, rN}: Sample sequence
// φ: Basis functions
// Calculate the initial parameter and its residual

θ̂0 ←

[

N−1
∑

t=0
φtx

⊤
t

]−1 [

N−1
∑

t=0
φtyt

]

ǫ̂t ← x⊤
t θ̂0 − yt

// Construct the suboptimal
// instrumental variable with optimal shift

ĉ← −

"

N−1
P

t=0

ǫ̂2
t
φt

#

−

"

N−1
P

t=0

ǫ̂2
t
φtφ

⊤
t

#"

N−1
P

t=0

xtφ
⊤
t

#

−1
"

N−1
P

t=0

xt

#

"

N−1
P

t=0

ǫ̂2
t

#

−

"

N−1
P

t=0

ǫ̂2
t
φ⊤

t

#"

N−1
P

t=0

xtφ
⊤
t

#

−1
"

N−1
P

t=0

xt

#

ẑt = φt + ĉ

//Calculate the parameter

θ̂c ←

[

N−1
∑

t=0
ẑtx

⊤
t

]−1 [

N−1
∑

t=0
ẑtyt

]

Return θ̂c

1 2 3 4

r = 0 r =1 r =0.5 r =0

Figure 1. A four-state MDP.

The proof is given in Appendix B. In eq. (23), however,
the residual ǫ∗t is again unknown; hence, we need to
approximate this, too, as in the gLSTD learning. We
call this procedure “LSTDc learning” (see Algorithm 2
for its pseudo code).

4. Simulation Experiments

So far, we have discussed the asymptotic variance un-
der the assumption that we have an infinite number of
samples. In this section, we evaluate the performance
of the proposed estimator in a practical situation with
a finite number of samples. We use an MDP defined
on a simple Markov random walk, which was also used
in a previous study (Lagoudakis & Parr, 2003). This
MDP incorporates a one-dimensional chain walk with
four states (Figure 1). Two actions, “left”(L) and
“right”(R), are available at every state. Rewards 1
and 0.5 are given when states ‘2’ and ‘3’ are visited,
respectively.

We adopt the simplest direct representation of states;
the state variable took s = 1, s = 2, s = 3 or s = 4,
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Figure 2. Simulation result.

when the corresponding state was visited. The value
function was defined as the average reward, eq. (2),
and was approximated by a linear function with a
three-dimensional basis function: φ(s) = [s, s2, s3]⊤.
The policy was set at random, and at the beginning
of each episode an initial state was randomly selected
according to the stationary distribution of this Markov
chain.

Under these conditions, we performed 100 episodes
each of which consisted of 100 random walk steps.
We evaluated the “mean squared error” (MSE) of the
value function, i.e.,

∑

i∈{1,2,3,4}

dπ(i)|V̂ (i)− V ∗(i)|2;

where V̂ and V ∗ denote V̂ (i) = φ(s = i)⊤θ̂

and V ∗(i) = φ(s = i)⊤θ∗, respectively.

Figure 2 shows box-plots of the MSEs of LSTD,
LSTDc, and gLSTD. For this example, estimators of
the conditional expectations in gLSTD can be calcu-
lated by sample average in each state, because there
were only four discrete states. In continuous state
problems, however, estimation of such conditional ex-
pectations would become much harder.

In Figure 2, the y-axis denotes the MSE of the value
function. The center line and the upper and lower sides
of each box denote the median of MSEs and the upper
and lower quartiles, respectively. The number above
each box represents the average MSE. There is signif-
icant difference between the MSE of LSTD and those
of LSTDc and gLSTD. The estimators for LSTDc and
for gLSTD both achieved a much smaller MSE than
that for the ordinary LSTD.

5. Conclusion

In this study, we have discussed LSTD-based policy
evaluation in the framework of semiparametric statis-
tical inference. We showed that the standard LSTD
algorithm is indeed an estimating function method

which is guaranteed to be consistent regardless of the
stochastic properties of the environments. Based on
the optimal estimating functions in the two classes of
estimating functions, we constructed two new policy
evaluation methods called gLSTD and LSTDc. We
also evaluated the asymptotic variance of the general
instrumental variable methods for MDP. Moreover, we
showed that the form of possible estimating functions
for the value function estimation is restricted to be the
same as those used in the instrumental variable meth-
ods. We then demonstrated, through an experiment
using a simple MDP problem, that the gLSTD and
LSTDc estimators reduce substantially the asymptotic
variance of the LSTD estimator.

Further work is necessary to construct procedures
for policy updating based on evaluation by gLSTD
and LSTDc. It should be possible to incorporate
our proposed ideas into the least-squares policy itera-
tion (Lagoudakis & Parr, 2003) and the natural actor-
critic method (Peters et al., 2005).

A. Proof of Theorem 1: The Optimal

Instrumental Variable

As shown in eq. (20), the asymptotic variance of the

estimator θ̂z is given by

AV[θ̂z] =
1

N
A−1

z MzA−⊤
z ,

where Az := Ed[ztx
⊤
t ] and Mz := Ed[(ǫ

∗
t )

2ztz
⊤
t ]. If

we add a small change δt(st, · · · , st−T ) to the instru-
mental variable zt, the matrices become

Az+δ = Az + Ed[δtx
⊤
t ],

Mz+δ = Mz + Ed[(ǫ
∗
t )

2(δtz
⊤
t + ztδ

⊤
t )].

Therefore, the deviation of the trace of asymptotic
variance can be calculated as

Tr
[

A−1
z+δMz+δA−⊤

z+δ

]

− Tr
[

A−1
z MzA−⊤

z

]

=− Tr
{

A−1
z Ed

[

δtx
⊤
t

]

A−1
z MzA−⊤

z

}

− Tr
{

A−1
z Ed

[

xtδ
⊤
t

]

A−1
z MzA−⊤

z

}

+ Tr
{

A−1
z Ed

[

(ǫ∗t )
2
(

ztδ
⊤
t + δz⊤

t

)]

A−⊤
z

}

=2Ed

[

δ⊤
t A−⊤

z A−1
z Eπ

[

(ǫ∗t )
2|st, · · · , st−T

]

zt

]

− 2Ed

[

δ⊤
t A−⊤

z A−1
z MzA−⊤

z Eπ[xt|st, · · · , st−T ]
]

.

By using the condition that the deviation becomes 0

for any small change δt(st, · · · , st−T ), the optimal in-
strumental variable can be obtained as

z∗
t = Eπ

[

(ǫ∗t )
2|st

]−1
MzA−⊤

z Eπ[xt|st].
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Considering Lemma 3, the optimal instrumental vari-
able is restricted as

z∗
t = Eπ

[

(ǫ∗t )
2|st

]−1
Eπ[xt|st],

or as its transformation by any regular matrix.

Now, we show that eq. (22) also satisfies the global
optimality. Substituting z∗

t to the matrix Az∗ , we
obtain

Az∗ = Mz∗A−⊤
z∗ F ,

where

F := Ed

[

Eπ[(ǫ∗t )
2|st]

−1Eπ[xt|st]E
π[x⊤

t |st]
]

.

Furthermore, the matrices at z∗
t + δt become

Az∗+δ = Mz∗A−⊤
z∗ F + Ed[xtδ

⊤
t ],

Mz∗+δ = Mz∗A−⊤
z∗ FA−1

z∗ Mz∗ + Mz∗A−⊤
z∗ Ed[xtδ

⊤
t ]

+ Ed[δtx
⊤
t ]A−1

z∗ Mz∗ + Ed[(ǫ
∗
t )

2δtδ
⊤
t ].

Therefore,

A−1
z∗+δMz∗+δA−⊤

z∗+δ −A−1
z∗ Mz∗A−⊤

z∗

= A−1
z∗+δ(Mz∗+δ −Az∗+δA−1

z∗ Mz∗A−⊤
z∗ A⊤

z∗+δ)A−⊤
z∗+δ

= A−1
z∗+δ(Ed[(ǫ

∗
t )

2δtδ
⊤
t ]− Ed[δtx

⊤
t ]F−1Ed[xtδ

⊤
t ])A−⊤

z∗+δ

= A−1
z∗+δ

{

Ed

[

Eπ[(ǫ∗t )
2|st]

×
(

δt − Eπ[(ǫ∗t )
2|st]

−1Ed[δtx
⊤
t ]F−1Eπ[xt|st]

)

×
(

δt − Eπ[(ǫ∗t )
2|st]

−1Ed[δtx
⊤
t ]F−1Eπ[xt|st]

)⊤
]

}

A−⊤
z∗+δ � 0.

The equality holds only when δt(st) ∝ z∗
t . (Q.E.D.)

B. Proof of Theorem 2: The Optimal c

By differentiating the trace of eq. (20), the optimal
constant c must satisfy

Ed[(ǫ
∗
t )

2]c + Ed[(ǫ
∗
t )

2φt] = McA
−⊤
c Ed[xt].

Using the well-known matrix inversion lemma (Horn
& Johnson, 1985), the solution can be obtained as
eq. (23).

In addition, the global optimality among those applied
by constant shifts can be proved using a similar argu-
ment to that in Appendix A. (Q.E.D.)
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