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Abstract

Identifying the appropriate kernel func-
tion/matrix for a given dataset is essential to
all kernel-based learning techniques. A num-
ber of kernel learning algorithms have been
proposed to learn kernel functions or matri-
ces from side information (e.g., either labeled
examples or pairwise constraints). However,
most previous studies are limited to “pas-
sive” kernel learning in which side informa-
tion is provided beforehand. In this pa-
per we present a framework of Active Ker-
nel Learning (AKL) that actively identifies
the most informative pairwise constraints for
kernel learning. The key challenge of active
kernel learning is how to measure the infor-
mativeness of an example pair given its class
label is unknown. To this end, we propose a
min-max approach for active kernel learning
that selects the example pair that results in
a large classification margin regardless of its
assigned class label. We furthermore approx-
imate the related optimization problem into
a convex programming problem. We evaluate
the effectiveness of the proposed algorithm by
comparing it to two other implementations of
active kernel learning. Empirical study with
nine datasets on semi-supervised data clus-
tering shows that the proposed algorithm is
more effective than its competitors.

1. Introduction

Kernel methods have attracted more and more atten-
tion of researchers in computer science and engineering
due to their superior performance in data clustering,
classification, and dimensionality reduction (Scholkopf
& Smola, 2002; Vapnik, 1998). Kernel methods have
been applied to many fields, such as data mining, pat-
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tern recognition, information retrieval, computer vi-
sion, and bioinformatics, etc. Since the choice of ker-
nel functions or matrices is often critical to the per-
formance of many kernel-based learning techniques, it
becomes a more and more important research prob-
lem for how to automatically learn a kernel func-
tion/matrix for a given dataset. Recently, a number of
kernel learning algorithms (Chapelle et al., 2003; Cris-
tianini et al., 2002; Hoi et al., 2007; Kondor & Laf-
ferty, 2002; Kulis et al., 2006; Lanckriet et al., 2004;
Zhu et al., 2005) have been proposed to learn kernel
functions or matrices from side information. The side
information can be provided in two different forms: ei-
ther labeled examples or pairwise constraints. In the
latter case, two types of pairwise constraints are exam-
ined in the previous studies: a must-link pair where
two examples should belong to the same class, and
a cannot-link pair where two examples should belong
to different classes. In this study, we focus on kernel
learning with pairwise constraints.

Most kernel learning methods, termed as “passive ker-
nel learning”, assume that labeled data is provided
beforehand. However, given the labeled data may be
expensive to acquire, it is more cost effective if we are
able to identify the most informative example pairs
such that the kernel can be learned efficiently with only
a small number of pairwise constraints. To this end, we
focus on active kernel learning (AKL) whose goal
is to identify the example pairs that are informative
to the target kernels. We extends our previous work
on non-parametric kernel learning (Hoi et al., 2007) to
active kernel learning. As shown in (Hoi et al., 2007),
the parametric approaches for kernel learning are of-
ten limited by their capacity in fitting diverse patterns
of real-world data, and therefore are not as effective as
the non-parametric approach for kernel learning.

The simplest approach toward active kernel learning is
to measure the informativeness of an example pair by
its kernel similarity. Given a pair of examples (xi,xj),
we assume that Ki,j , the kernel similarity between xi

and xj , is a large positive number when xi and xj

are in the same class, and a large negative number
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Figure 1. Examples of active kernel learning: (a) double-spiral artificial data with some given pairwise constraints, (b)
AKL with the least |Ki,j |, (c) the proposed AKL method. The right bars show the resulting clustering accuracies using
kernel k-means clustering methods.

when they are in different classes. Thus, by follow-
ing the uncertainty principle of active learning (Tong
& Koller, 2000; Hoi et al., 2006), the most informa-
tive example pairs should be the ones whose kernel
similarities are closest to zero. In other words, the
criterion is to select the example pair with the least
absolute kernel similarity (i.e., |Ki,j|). Unfortunately,
this simple approach may not always be effective in
obtaining informative pairwise constraints for kernel
learning. Figure 1 illustrates an example of active
kernel learning for data clustering. In this example,
Figure 1(a) shows an artificial dataset of two classes
together with a few pairwise constraints. Figure 1(b)
shows the pairwise constraints with the least |Ki,j |.
We observe that most of them are must-link pairs with
two data points separated by a modest distance. Since
must-link constraints are not informative to the clus-
tering boundary, a relatively small improvement is ob-
served in clustering accuracy (from 51% to 58%) when
using the kernel learned by this simple approach. In
contrast, as shown in Figure 1(c), the proposed ap-
proach for active kernel learning is able to identify
a pool of diverse pairwise constraints, including both
must-links and cannot-links. The clustering accuracy
is increased significantly, from 51% to 86%, by using
the proposed active kernel learning.

The rest of this paper is organized as follows. Sec-
tion 2 presents the min-max framework for our active
kernel learning method, in which the problem is formu-
lated into a convex optimization problem. Section 3
describes the results of the experimental evaluation.
Section 4 concludes this work.

2. Active Kernel Learning

Our work extends the previous work on non-
parametric kernel learning (Hoi et al., 2007) by in-
troducing the component of actively identifying the

example pairs that are most informative to the target
kernel. In this section, we will first briefly review the
non-parametric approach for kernel learning in (Hoi
et al., 2007), followed by the description of the min-
max framework for active kernel learning.

2.1. Non-parametric Kernel Learning

Let the entire data collection be denoted by U =
(x1,x2, . . . ,xN ) where each data point xi ∈ R

d is a
vector of d elements. Let S ∈ R

N×N be a symmetric
matrix where each Si,j ≥ 0 represents the similarity
between xi and xj . Unlike the kernel similarity ma-
trix, S does not have to be positive semi-definite. For
the convenience of presentation, we set Si,i = 0 for all
the examples. Then, according to (Hoi et al., 2007),
a normalized graph Laplacian L is constructed using
the similarity matrix S as follows:

L = (1 + δ)I − D−1/2SD−1/2

where D = diag(d1, d2, . . . , dN ) is a diagonal matrix
with di =

∑N
j=1 f(xi,xj). A small δ > 0 is introduced

to prevent L from being singular. Let’s denote by T
the set of pairwise constraints. We construct a matrix
T ∈ R

N×N to represent the pairwise constraints in T ,
i.e.,

Ti,j =

⎧⎨
⎩

+1 (xi,xj) is a must-link pair in T
−1 (xi,xj) is a cannot-link pair in T
0 otherwise

Given the similarity matrix S and the pairwise con-
straints in T , the goal of kernel learning is to identify
a kernel matrix Z ∈ R

N×N that is consistent with both
T and S. Following (Hoi et al., 2007), we formulate it
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into the following convex optimization problem:

argmin
Z,ε

tr(LZ) +
c

2

∑
(i,j)∈T

ε2
i,j (1)

s. t. ∀(i, j) ∈ T , Zi,jTi,j ≥ 1 − εi,j, εi,j ≥ 0
Z � 0

The first term in the above objective function plays a
similar role as the manifold regularization (Belkin &
andd P. Niyogi, 2004), where the graph Laplacian is
used to regularize the classification results. The second
term in the above measures the inconsistency between
the learned kernel matrix Z and the given pairwise
constraints. Note that unlike the formulation in (Hoi
et al., 2007), we change εi,j in the loss function to ε2

i,j .
This modification is specifically designed for active ker-
nel learning, and the reason will be clear later. It is
not difficult to see that the problem in (1) is a semi-
definite programming problem, and therefore can be
solved by the standard software package, such as Se-
DuMi (Sturm, 1999).

2.2. Min-max Framework for Active Kernel
Learning

The simplest approach toward active kernel learning
is to follow the uncertainty principle of active learn-
ing, and to select the example pair (xi,xj) with the
least |Zi,j | 1. However, as already discussed in the in-
troduction section, the key problem with this simple
approach is that the example pairs with the least |Zi,j |
may not necessarily be the the most informative ones,
and therefore may not result in an efficient learning of
the kernel matrix. To address this problem, we pro-
pose a min-max framework for active kernel learning
that measures the informativeness of an example pair
by how significantly the selected example pair will af-
fect the target kernel matrix.

Consider an unlabeled example pair (xk,xl) /∈ T . To
measure how this example will affect the kernel matrix,
we consider the kernel learning problem with the addi-
tional example pair (xk,xl) labeled by y ∈ {−1, +1},
i.e.,

min
Z,ε

tr(LZ) +
c

2

∑
(i,j)∈T

ε2
i,j +

c

2
ε2

k,l (2)

s. t. Ti,jZi,j ≥ 1 − εi,j , ∀(i, j) ∈ T
yZk,l ≥ 1 − εk,l, Z � 0

Let us denote by ω((k, l), y) the optimal value of the
above optimization problem. Intuitively, ω((k, l), y)

1Here we assume that Zi,j > 0 when xi and xj are likely
to share the same class, and Zi,j < 0 when xi and xj are
likely to be assigned to different classes

measures the overall classification accuracy with the
additional example pair (xk,xl) labeled by y. To
further measure the informativeness of example pair
(xk,xl), we introduce the quantity κ(k, l) as follows

κ(k, l) = max
y∈{−1,+1}

ω((k, l), y) (3)

Clearly, κ(k, l) measures the worst classification error
with the addition of example pair (xk,xl). Overall,
κ(k, l) measures how the example pair (xk,xl) will
affect the overall objective function, which indirectly
measures the impact of the example pair on the tar-
get kernel matrix. To see this, consider an example
pair (xk,xl) that is highly consistent with the current
kernel Z with label y (i.e., Zk,ly ≥ 1). According to
the definition κ(k, l), we would expect a large κ(k, l)
for pair (xk,xl). This is because by assigning a label
−y to example pair (xk,xl), we expect a large clas-
sification error and therefore large κ(k, l). Hence, we
use κ(k, l) to measure the uninformativeness of exam-
ple pairs, i.e., the smaller κ(k, l), the less informative
the example pair is. Therefore, the most informative
example pair is found by minimizing κ(k, l), i.e.,

(k, l)∗ = argmin
(k,l) �∈T

max
t∈{−1,+1}

ω((k, l), t) (4)

Directly solving the min-max optimization problem in
(4) is challenging because function ω((k, l), t) is defined
implicitly by the optimization problem in (2). The
following theorem allows us to significantly simplify
the optimization problem in (4)

Theorem 1. The optimization problem in (4) is
equivalent to the following optimization problem

min
Z,ε,(k,l)/∈T

tr(LZ) +
c

2

∑
(i,j)∈T

ε2
i,j +

c

2
ε2

k,l (5)

s. t. Ti,jZi,j ≥ 1 − εi,j , εi,j ≥ 0, ∀(i, j) ∈ T
εk,l ≥ 1 + |Zk,l|, Z � 0

Proof. The above theorem follows the fact that the so-
lution y∗ ∈ {−1, +1} maximizing ω((k, l), y) is y∗ =
−sign(Zk,l). This fact allows us to remove the maxi-
mization within (4) and obtain the result in the theo-
rem.

The following corollary shows that the approach of se-
lecting the example pair with the least |Zk,l| indeed
corresponds to a special solution for the problem in (5).

Corollary 2. The optimal solution to (5) with fixed
kernel matrix Z is the example pair with the least
|Zk,l|, i.e.,

(k, l)∗ = argmin
(k,l)/∈T

|Zk,l|
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Proof. By fixing Z, the problem in (5) is simplified as

min
(k,l)/∈T

ε2
k,l s. t. εk,l ≥ 1 + |Zk,l|

It is easy to see that the optimal solution to the above
problem is the example pair with the least |Zk,l|.

Note that a similar observation is described in the
study (Chen & Jin, 2007) for standard active learn-
ing.

2.3. Algorithm

The straightforward approach toward the optimiza-
tion problem in (5) is to try out every example pair
(xk,xl) /∈ T . Evidently, this approach will not scale
well when the number of example pairs is large.

Our first attempt toward solving the problem (5) is to
turn it into a continuous optimization problem. To this
purpose, we introduce variable pk,l ≥ 0 to represent
the probability of selecting the example pair (k, l) �∈ T .
Using this notation, we have the optimization problem
in (5) rewritten as

min
Z�0,p,ε

tr(LZ) +
c

2

∑
(i,j)∈T

ε2
i,j +

c

2

∑
(k,l) �∈T

pk,lε
2
k,l (6)

s. t. Ti,jZi,j ≥ 1 − εi,j , ∀(i, j) ∈ T
εk,l − 1 ≥ Zk,l ≥ 1 − εk,l, ∀(k, l) �∈ T∑
(k,l) �∈T

pk,l ≥ 1, pk,l ≥ 0, ∀(k, l) �∈ T

The following theorem shows the relationship between
(6) and (5).

Theorem 3. Any global optimal solution to (5) is also
a global optimal solution to (6).

The proof of the above theorem can be found in Ap-
pendix A.

Unfortunately, the optimization problem in (6) is non-
convex because of the term pk,lε

2
k,l. It is therefore

difficult to find the global optimal solution for (6). In
order to turn (6) into a convex optimization problem,
we view the constraint

∑
(k,l)/∈T pk,l ≥ 1 as a bound

for the arithmetic mean of pk,l, i.e.,

1
m

∑
(k,l)/∈T

pk,l ≥
1
m

where m = |{(k, l)|(k, l) /∈ T }|. We then relax this
constraint by the harmonic mean of pk,l, i.e.,

m∑
(k,l)/∈T p−1

k,l

≥ 1
m

, or
∑

(k,l)/∈T
p−1

k,l ≤ m2

The above relaxation is based on the property that a
harmonic mean is no larger than an arithmetic mean.
By replacing the constraint

∑
(k,l)/∈T pk,l ≤ 1 with (7),

we have (6) relaxed into the following optimization
problem

min
Z�0,p,ε

tr(LZ) +
c

2

∑
(i,j)∈T

ε2
i,j +

c

2

∑
(k,l) �∈T

pk,lε
2
k,l (7)

s. t. Ti,jZi,j ≥ 1 − εi,j , εi,j ≥ 0, ∀(i, j) ∈ T
εk,l − 1 ≥ Zk,l ≥ 1 − εk,l, ∀(k, l) �∈ T∑
(k,l) �∈T

p−1
k,l ≤ m2, 0 ≤ pk,l ≤ 1, ∀(k, l) �∈ T

By defining variable hk,l = p−1
k,l , we have

min
Z�0,h,ε

tr(LZ) +
c

2

∑
(i,j)∈T

ε2
i,j +

c

2

∑
(k,l) �∈T

ε2
k,l

hk,l
(8)

s. t. Ti,jZi,j ≥ 1 − εi,j, εi,j ≥ 0, ∀(i, j) ∈ T
εk,l − 1 ≥ Zk,l ≥ 1 − εk,l, ∀(k, l) �∈ T∑
(k,l) �∈T

hk,l ≤ m2, hk,l ≥ 1, ∀(k, l) �∈ T

Notice that constraint 0 ≤ pk,l ≤ 1 is transferred into
hk,l ≥ 1. The following theorem shows the property of
the formulation in (8)
Theorem 4. We have the following properties for (8)

• (8) is a semi-definite programming (SDP) prob-
lem.

• Any feasible solution to (8) is also a feasible solu-
tion to (5) with pk,l = h−1

k,l , and the optimal value
for (6) is upper bounded by that for (8).

The proof is provided in Appendix B. Note that us-
ing ε2

i,j instead of εi,j for the loss function is key to
turning (6) into a convex optimization problem. The
second property stated in Theorem 4 indicates that
by minimizing (8), we guarantee a small value for the
objective function in (6).

The following theorem shows the dual problem of (8),
which is the key to the efficient computation.
Theorem 5. The dual problem of (8) is

max
Q,W

∑
(i,j)∈T

(
Qi,j −

Q2
i,j

2c

)
+

∑
(k,l)/∈T

(
|Wk,l| −

W 2
k,l

2c

)

−2(m2 − m)
c

λ (9)

s. t L � Q ⊗ T + W ⊗ T̄

∀(i, j) ∈ T , Qi,j ≥ 0, λ ≥ W 2
k,l, ∀(k, l) /∈ T

where matrix T̄ is defined as

T̄i,j =
{

0 (i, j) ∈ T
1 otherwise ,
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and ⊗ stands for the element wise product of matrices.

The proof can be found in Appendix C. In the dual
problem, variables Qi,j and Wi,j are the dual variables
that indicate the importance of labeled example pairs
and unlabeled examples, respectively. We thus will se-
lect the unlabeled example pair with the largest |Wi,j |.
To speed up the computation, in our experiment, we
first select a subset of example pairs (fixed 200) with
smallest |Zi,j | using the current kernel matrix Z. We
then set all Wk,l to be zero if the corresponding pair is
not selected. In this way, we significantly reduce the
number of variables in the dual problem in (9), thus
simplifying the computation.

3. Experimental Results

In our experiments, we follow the work (Hoi et al.,
2007), and evaluate the proposed algorithm for active
kernel learning by the experiments of data clustering.
More specifically, we first apply the active kernel learn-
ing algorithm to identify the most informative example
pairs, and then solicit the class labels for the selected
example pairs. A kernel matrix will be learned from
the labeled example pairs, and the learned kernel ma-
trix will be used by the clustering algorithm to find
the right cluster structure.

3.1. Experimental Setup

We use the same datasets as the ones described in (Hoi
et al., 2007). Table 1 summarizes the information
about the nine datasets used in our study. We adopt
the clustering accuracy defined in (Xing et al., 2002)
as the evaluation metric. It is defined as follows

Accuracy =
∑
i>j

1{1{ci = cj} = 1{ĉi = ĉj}}
0.5n(n − 1)

, (10)

where 1{·} is the indicator function that outputs 1
when the input argument is true and 0 otherwise. ci

and ĉi denote the true cluster membership and the
predicted cluster membership of the ith data point, re-
spectively. n is the number of examples in the dataset.
For the graph Laplacian L used by the nonparamet-
ric kernel learning, we apply the standard method for
all experiments, i.e., by calculating the distance ma-
trix by Euclidean distance, then constructing the ad-
jacency matrix with five nearest neighbors, and finally
normalizing the graph to achieve the final Laplacian
matrix.

3.2. Performance Evaluation

To evaluate the quality of the learned kernels, we ex-
tend the proposed kernel learning algorithm to solve

Table 1. The nine datasets used in our experiments. The
first two are the artificial datasets from (Hoi et al., 2007)
and the others are from the UCI machine learning reposi-
tory.

Dataset #Classes #Instances #Features
Chessboard 2 100 2
Double-Spiral 2 100 3
Glass 6 214 9
Heart 2 270 13
Iris 3 150 4
Protein 6 116 20
Sonar 2 208 60
Soybean 4 47 35
Wine 3 178 12

clustering problems with pairwise constraints. In the
experiments, we employ the kernel k-means as the
clustering method, in which the kernel is learned by
the proposed non-parametric kernel learning method.
In addition to the proposed active kernel learning
method, two baseline approaches are implemented to
select informative example pairs for kernel learning.
Totally we have:

• Random: This baseline method randomly sam-
ples example pairs from the pool of unlabeled
pairs.

• AKL-min-|Z|: This baseline method chooses the
pair examples with the least |Zk,l|, where matrix
Z is learned by the non-parametric kernel learning
method. As already discussed in the introduction
section, this approach may not find the most in-
formative example pairs.

• AKL-min-H: This is the proposed AKL algo-
rithm. It selects the example pairs with least Hk,l

that corresponds to the maximal selection proba-
bility Pk,l.

To examine the performance of the proposed AKL al-
gorithm in a full spectrum, we evaluate the clustering
results with respect to different sampling sizes. Specif-
ically, for each experiment, we first randomly sample
Nc pairwise constraints as the initially labeled pair
examples. We then employ the nonparametric kernel
learning method to learn a kernel from the given pair-
wise constraints. This learned kernel is engaged by the
kernel k-means method for data clustering. Next, we
apply the AKL method to sample 20 pair examples
(i.e. 20 pairwise constraints) for labeling in an itera-
tion, and then examine the clustering results based on
the kernel that is learned from the augmented set of
example pairs in each iteration.
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Each experiment is repeated 50 times with multiple
restarts for clustering. Fig. 2 shows the experimen-
tal results on the nine datasets with five active ker-
nel learning iterations. First of all, we observe that
AKL-min-|Z|, i.e., the naive AKL approach that sam-
ples the example pairs with the least |Z|, does not
always outperform the random sampling approach. In
fact, it only outperforms the random sampling ap-
proach on five out of the nine datasets. It performs
noticeably worse than the random approach on dataset
“sonar” and “heart”. Compared with the two baseline
approaches, the proposed AKL algorithm (i.e., AKL-
min-H) achieves considerably better performance for
most datasets. For example, for the “Double-Spiral”
dataset, after 3 active kernel learning iterations, the
proposed algorithm is able to achieve the clustering
accuracy of 99.6%, but the clustering accuracies of the
other two methods are less than 98.8%. These exper-
imental results show the effectiveness of the proposed
algorithm as a promising approach for active kernel
learning.

4. Conclusion

In this paper we proposed a min-max framework for
active kernel learning that specifically addresses the
problem of how to identify the informative pair ex-
amples for efficient kernel learning. A promising al-
gorithm is presented that approximates the original
min-max optimization problem into a convex program-
ming problem. Empirical evaluation based on the per-
formance of data clustering showed that our proposed
algorithm for active kernel learning is effective in iden-
tifying informative example pairs for the learning of
kernel matrix.
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Appendix A: Proof of Theorem 3

Proof. First, for any global optimal solution to (6),
we have

∑
(k,l)/∈T pk,l = 1 though the constraint in (6)

is
∑

(k,l)/∈T pk,l ≥ 1. This is because we can always
scale down pk,l if

∑
(k,l)/∈T pk,l > 1, which guarantees

to reduce the objective function. Second, any extreme
point solution (i.e., pk,l = 1 for one example pair and

zero for other pairs) to (6) is a global optimal solution
to (5). This is because (6) is a relaxed version of (5).
Third, one of the global optimal solutions to (6) is an
extreme point. This is because the first order condi-
tion of optimality requires p∗k,l to be a solution to the
following problem:

min
p

c

2

∑
(k,l) �∈T

pk,l[ε∗k,l]
2 (11)

s. t.
∑

(k,l) �∈T
pk,l ≥ 1, pk,l ≥ 0, ∀(k, l) �∈ T

where ε∗k,l is the optimal solution for εk,l. Since (11)
is a linear optimization problem, it is well known
that one of its global optimal solutions is an extreme
point. Combining the above arguments together, we
prove there exists a global solution to (5), denoted by
((k, l)∗, Z∗, ε∗i,j) that is also a global solution to (6)
with p(k,l)∗ = 1. We extend this conclusion to any
other global solution ((k, l)′, Z ′, ε′i,j) to (5) because
((k, l)′, Z ′, ε′i,j) results in the same value for the prob-
lem in (6) as solution ((k, l)∗, Z∗, ε∗i,j). This completes
our proof.

Appendix B: Proof of Theorem 4

Proof. To show (8) is a SDP problem, we introduce
slack variables for both labeled and unlabeled example
pairs, i.e., ηi,j ≥ ε2

i,j and ηk,l ≥ ε2
k,l/hk,l. We can turn

these two nonlinear constraints into LMI constraints,
i.e.,(

ηi,j εi,j

εi,j 1

)
� 0,

(
ηk,l εk,l

εk,l hk,l

)
� 0

Using the slack variables, we rewrite (8) as

min
Z�0,h,ε

tr(LZ) +
c

2

∑
(i,j)∈T

ηi,j +
c

2

∑
(k,l) �∈T

ηk,l(12)

s. t. Ti,jZi,j ≥ 1 − εi,j , εi,j ≥ 0, ∀(i, j) ∈ T
εk,l − 1 ≥ Zk,l ≥ 1 − εk,l, ∀(k, l) �∈ T∑
(k,l) �∈T

hk,l ≤ m2, hk,l ≥ 1, ∀(k, l) �∈ T

(
ηi,j εi,j

εi,j 1

)
� 0, ∀(i, j) ∈ T(

ηk,l εk,l

εk,l hk,l

)
� 0, ∀(k, l) �∈ T ,

which is clearly a SDP problem.

To show the second part of theorem, we follow the
inequality that a harmonic mean is upper bounded by
an arithmetic mean, i.e.,

1
m

∑
(k,l)/∈T

pk,l ≥
m∑

(k,l)/∈T p−1
k,l

=
m∑

(k,l)/∈T hk,l
≥ 1

m
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Figure 2. The clustering accuracy of different AKL methods for kernel k-means algorithms with nonparametric kernels
learned from pairwise constraints. In each individual diagram, the three curves are respectively the random sampling
method, the active kernel learning method for selecting pair examples with the least |Zk,l| (AKL-min-|Z|), and the active
kernel learning method with minimal H values learned from our proposed algorithm (AKL-min-H). The details of the
datasets are also shown in each diagram. In particular, N , C, D, and Nc respectively denote the dataset size, the number
of classes, the number of features, and the number of initially sampling pairwise constraints. In each of the five iterations,
20 pair examples are sampled for labeling by the compared algorithms.
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Hence, any feasible solution to (8) is also a feasible
solution to (6), and (8) is a restricted version of (8),
which leads to the conclusion that the optimal output
value for (8) provides the upper bound for that of (6).

Appendix C: Proof of Theorem 5

Proof. We first constructe the Lagrangian function for
the above problem

L = tr(L�Z) +
c

2

∑
(i,j)∈T

ηi,j +
c

2

∑
(k,l)/∈T

ηk,l

−
∑

(i,j)∈T
Qi,j(Ti,jZi,j + εi,j − 1)

−
∑

(i,j)∈T
(αi,jηi,j + τi,j/2 − 2βi,jεi,j) − tr(MZ)

−
∑

(k,l)/∈T
sk,l(hk,l − 1) − λ

⎛
⎝m2 −

∑
(k,l)/∈T

hk,l

⎞
⎠

−
∑

(k,l)/∈T
(αk,lηk,l + τk,lhk,l/2 − 2βk,lεk,l)

−
∑

(k,l)/∈T
Wk,lZk,l + (εk,l − 1)|Wk,l|

In the above, we introduce Lagrangian multiplier(
αi,j −βi,j

−βi,j τi,j/2

)

for constraints(
ηi,j εi,j

εi,j 1

)
� 0 and

(
ηk,l εk,l

εk,l hk,l

)
� 0

By setting the derivative to be zero, we have

max
∑

(i,j)∈T

(
Qi,j −

τi,j

2

)
+
∑

(k,l)/∈T

(
|Wk,l| −

τk,l

2

)
(13)

−(m2 − 1)λ
s. t L � Q ⊗ T + W ⊗ T̄(

c −Qi,j

−Qi,j τi,j

)
� 0, Qi,j ≥ 0, ∀(i, j) ∈ T

0 ≤ τk,l ≤ 2λ, ∀(k, l) /∈ T(
c −|Wk,l|

−|Wk,l| τk,l

)
� 0, ∀(k, l) /∈ T

The two LMI constraints can be simplified as

τi,j ≥ 2Q2
i,j/c, τk,l ≥ 2Q2

k,l/c

Substituting the above constraints into (13), we have
(9).
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