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Abstract

We propose a new stopping condition for a Sup-
port Vector Machine (SVM) solver which pre-
cisely reflects the objective of the Leave-One-
Out error computation. The stopping condition
guarantees that the output on an intermediate
SVM solution is identical to the output of the op-
timal SVM solution with one data point excluded
from the training set. A simple augmentation
of a general SVM training algorithm allows one
to use a stopping criterion equivalent to the pro-
posed sufficient condition. A comprehensive ex-
perimental evaluation of our method shows con-
sistent speedup of the exact LOO computation by
our method, up to the factor of 13 for the linear
kernel. The new algorithm can be seen as an ex-
ample of constructive guidance of an optimiza-
tion algorithm towards achieving the best attain-
able expected risk at optimal computational cost.

1. Introduction

The interrelation between a computational complexity and
a generalization ability of learning algorithms has seldom
been considered in machine learning. Since the solutions
to a majority of learning problems are obtained by iter-
ative optimization algorithms, solution accuracy plays an
important role in the estimation of expected risk (Bartlett
& Mendelson, 2006). In practice, the available computa-
tional resources necessitate a tradeoff between approxima-
tion accuracy determined by the choice of a class of func-
tions, estimation error determined by a finite set of exam-
ples, and an optimization error determined by the accuracy
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of a solver attainable within a given time budget (Bottou &
Bousquet, 2008).

The asymptotic analysis in (Bottou & Bousquet, 2008) pro-
vides upper bounds on the time required to reach a cer-
tain expected risk by a given algorithm. From the practi-
cal point of view, it is desirable to haveconstructiveinflu-
ence over a learning algorithms, by choosing its parame-
ters, such as e.g. learning rate or stopping conditions, to
reach the best attainable expected risk. The present contri-
bution provides an example of such a constructive mecha-
nism by developing optimal stopping conditions for SVM
training using a particular estimator of an expected risk –
the leave-one-out (LOO) error. Although exact computa-
tion of a LOO error is hardly used for large-scale learning
due to its computational burden, our method is feasible for
“small-scale” learning with “expensive” data (e.g. in bioin-
formatics or finance), especially when accurate estimation
of expected risk is required.

The LOO is known to provide an unbiased estimator of
the generalization error (Lunts & Brailovskiy, 1967). The
naive computation of the LOO error, i.e. by explicit re-
learning after exclusion of each single example, is in all but
the simplest cases impractical. The problem of speeding up
a computation of a LOO error has received significant at-
tention. The following approaches exist:

• LOO bounds provide an estimate of the LOO error
given an optimal solution of the SVM training prob-
lem ((Joachims, 2000; Vapnik & Chapelle, 2000;
Jaakkola & Haussler, 1999; Zhang, 2001)). These
bounds are computationally efficient but imprecise. In
practice, if an accurate estimate of the classification
accuracy is needed, exact computation of the LOO er-
ror is unavoidable.

• Incremental SVM (Cauwenberghs & Poggio, 2000)
allows one to exactly determine for each candidate
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training point –after obtaining the optimal SVM so-
lution – whether or not it will be a LOO error. This
approach avoids explicit re-training, but incremental
unlearning of points is complicated and requires spe-
cial organization of matrix operations (Laskov et al.,
2007).

• Loose stopping conditions based on theε-KKT allow
one to speed up the LOO computationbeforeobtain-
ing an optimal solution. Such methods, (e.g. (Lee
& Lin, 2000; Martin et al., 2004)) use fairly simple
heuristics, but lack theoretical justification that would
connect theε to a precision of the LOO computation.
As it is illustrated in the examples in Section 2, these
methods can also be imprecise.

In this contribution we propose a new stopping condition
for an SVM solver whichprecisely reflectsthe objective
of the LOO error computation. Our main result, given in
Theorem 1, provides a sufficient condition for which the
output on an intermediate SVM solution is identical to the
output of the optimal SVM solution with one data point ex-
cluded from the training set. Although this sufficient con-
dition cannot be computed in practice, we propose a simple
augmentation of a general SVM training algorithm which
allows one to use a stopping criterion equivalent to the pro-
posed sufficient condition.

2. Leave-One-Out Error Estimate For
Support Vector Machines Classifier

Let X be a set of inputs andY = {−1, +1} a set
of labels of an analyzed object. Let furtherTXY =
{(x1, y1), . . . , (xm, ym)} ∈ (X × Y)m be a finite train-
ing set i.i.d. sampled from unknownP (x, y). The goal is
to learn a classifierf : X → Y minimizing the probability
of misclassificationR[f ] =

∫

V (y, f(x))dP (x, y) where
V (y, y′) = 1 for y 6= y′ andV (y, y′) = 0 otherwise.

The SVMs represent the input states in the Reproducing
Kernel Hilbert Space (RKHS) via a mapΦ : X → H which
is implicitly defined by a kernel functionk : X × X →
R (Schölkopf & Smola, 2002). The classifier is assumed to
be linear, i.e.,f(x; w, b) = 〈w,Φ(x)〉 + b, wherew ∈ H,
b ∈ R are unknown parameters and〈·, ·〉 denotes an inner
product in RKHS. BecauseR[f ] cannot be minimized di-
rectly due to the unknownP (x, y), the SVMs replaceR[f ]
by a regularized risk its minimization leads to

(w∗, b∗) = argmin
w∈H,b∈R

(

1

2
‖w‖2

H+C
∑

i∈I

V̂ (yi, f(xi; w, b))

)

(1)
where C ∈ R

+ is a regularization constant,
V̂ (yi, f(xi; w, )) = max(0, 1 − yif(xi; w, b)) is a convex
piece-wise linear approximation ofV (yi, f(xi; w, b)) and

I = {1, . . . , m}. By the Representer theorem (Schölkopf
& Smola, 2002), the optimal SVM classifierf(x; w∗, b∗)
can be expressed in the form

f(x; α, b) =







+1 if
∑

i∈I

αiyik(x, xi) + b ≥ 0 ,

−1 if
∑

i∈I

αiyik(x, xi) + b < 0 ,

(2)
whereα = (α1, . . . , αm)T ∈ R

m, b ∈ R. Substituting (2)
to (1) allows to find the optimal SVM classifier by solving
a convex QP task

(α∗, b∗, ξ∗) = argmin
(α,b,ξ)∈A

F (α, b, ξ) (3)

where the convex objective function reads

F (α, b, ξ) =
1

2

∑

i∈I

∑

j∈I

αiαjyiyjk(xi, xj) + C
∑

i∈I

ξi ,

and the convex feasible setA contains all(α ∈ R
m, b ∈

R, ξ ∈ R
m) satisfying

yi

(

∑

j∈I

αjyjk(xi, xj) + b

)

≥ 1 − ξi , i ∈ I ,

ξi ≥ 0 , i ∈ I .

Minimizing the regularized risk (1) (or QP task (3) respec-
tively) allows to find parameters(α, b) of the SVM classi-
fier provided the hyper-parameters, i.e., the kernel function
k and the regularization constantC, are known. This is not
the case in practice and the hyper-parameters(C, k) must
be optimized as well. A common approach is to select the
best(C, k) from a given finite setΘ by minimizing some
performance measure. The setΘ is usually created by rea-
sonably discretizing the hyper-parameters space. As the
performance measure, the LOO errorRLOO[f ] is a com-
mon choice.

Let (α∗(r), b∗(r), ξ∗(r)) denote the optimal solution of the
primal QP task (3) withr-th example removed from the
training set which is equivalent to solving the task

(α∗(r), b∗(r), ξ∗(r)) = argmin
(α,b,ξ)∈A(r)

F (α, b, ξ) , (4)

whereA(r) = A ∩ {(α, b, ξ) | αr = 0}, i.e.,A(r) de-
notes the original feasible setA enriched by an additional
constraintαr = 0. The LOO error estimator is defined as

RLOO[f(·; α∗, b∗)] =
1

m

∑

r∈I

V (yr, f(xr; α
∗(r), b∗(r))) .

(5)

The major practical disadvantage of the LOO error is its
high computational cost. A naive approach to compute
LOO requires solvingm different QP tasks (4). In some
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cases, however, the valuef(xr; α
∗(r), b∗(r)) can be im-

mediately derived from the optimal solution(α∗, b∗, ξ∗)
computed from the entire training set. Table 1 summarizes
the known sufficiency checks; the implication 1 is gener-
ally known and the implications 2, 3 are due to (Joachims,
2000).

1. If α∗
r = 0 thenyr = f(xr; α

∗(r), b∗(r)).

2. If yr 6= f(xr; α
∗, b∗) thenyr 6= f(xr; α

∗(r), b∗(r)).

3. Let R2 be an upper bound onk(x, x) − k(x, x′),
∀x, x′ ∈ X , and let(α∗, b∗, ξ∗) be a stable solution
which means that there exist at least onei ∈ I such
that0 < α∗

i < C. In this case, if2α∗
rR

2 + ξ∗r < 1
thenyr = f(xr; α

∗(r), b∗(r)).

Table 1.Sufficiency checks for computingf(xr; α
∗(r), b∗(r))

directly from(α∗, b∗, ξ∗).

A portion of the training examples for which the sufficiency
checks apply depends on the problem at hand (for empirical
study see (Martin et al., 2004)). (Joachims, 2000) proposed
using the sufficiency checks to compute an upper bound on
the LOO error calledξα-estimator. It has been empirically
shown, that in general theξα-estimator is not sufficiently
precise for the hyper-parameter tuning (Duan et al., 2003).
Algorithm 1 shows a standard procedure of computing the
LOO error exactly with the use of the sufficiency checks to
reduced the number of cases when the solution of the QP
task (4) is required.

Algorithm 1 Computation of the LOO Error

1: Solve the QP task (3) to obtain(α∗, b∗, ξ∗).
2: Apply the sufficiency checks from Table 1 to compute

f(xr; α
∗(r), b∗(r)) from (α∗, b∗, ξ∗).

3: For examples unresolved in Step 2 solve the QP
task (4) to obtain(α∗(r), b∗(r)).

4: Compute the LOO error by (5) using
f(xr; α

∗(r), b∗(r)), r ∈ I obtained in Steps 2
and 3.

Algorithm 1 requires the use of an optimization method
solving the QP tasks (3) and (4) exactly, i.e., producing
the optimal solutions. Although such optimization meth-
ods exist, they are applicable only for very small problems.
In practice, the QP tasks are solved only approximately via
their dual representation which is more suitable for opti-
mization due to a simpler feasible set. In particular, the
minimizerα∗ of the primal QP task (3) can be equivalently
computed by solving the dual QP task

α∗ = argmax
α∈B

(

∑

i∈I

αi −
1

2

∑

i∈I

∑

j∈I

αiαjyiyjk(xi, xj)

)

,

(6)

whereB is a convex feasible set which contains allα ∈ R
m

satisfying

∑

i∈I

αiyi = 0 , and 0 ≤ αi ≤ C , i ∈ I .

We will useG(α) to denote the objective function of (6).
Having α∗ computed, the remaining primal variables
(b∗, ξ∗) can be obtained easily from the Karush-Kuhn-
Tucker (KKT) optimality conditions (e.g., (Boyd & Van-
denberghe, 2004)). Similarly, the minimizerα∗(r) of the
QP task (4) is obtained by solving the dual

α∗(r) = argmax
α∈B(r)

G(α) , (7)

whereB(r) = B ∩ {α | αr = 0} and the primal variables
(b∗(r), ξ∗(r)) can be again obtained by the KKT condi-
tions. From the optimization point of view, the QP tasks (6)
and (7) are equivalent since the latter can be converted to
the former simply by excluding ther-th variable. Thus
we now concentrate only on the optimization of the QP
task (6).

Algorithm 2 Commonly used iterative QP solver

1: Initialize t := 0 andα(t) ∈ B.
2: t := t + 1 .
3: Updateα(t−1) → α(t), i.e., findα(t) ∈ B such that

G(α(t−1)) < G(α(t)).
4: If α(t) satisfies theε-KKT conditions (8) halt other-

wise go to 2.

A framework of a commonly used QP solver optimiz-
ing (6) describes Algorithm 2. Among the most popu-
lar methods which fit to the framework of Algorithm 2
belong the Sequential Minimal Optimizer (SMO) (Platt,
1998), SVMlight (Joachims, 1998) and other decomposi-
tion methods (e.g. (Vapnik, 1995; Osuna et al., 1997)). All
these solvers iteratively increase the dual criterionG(α)
until the solution satisfies stopping conditions. A relaxed
version of the KKT optimality conditions is the most fre-
quently used stopping criterion: letε ≥ 0 be a prescribed
number and∇i(α) = 1 − yi

∑

j∈I
αjyjk(xi, xj); then a

vectorα ∈ B satisfies the relaxed KKT conditions (e.g.
(Keerthi et al., 2001)) if there existb ∈ R such that

∇i(α) + byi ≤ ε , if αi = 0 ,
−∇i(α) + byi ≤ ε , if αi = C ,

| − ∇i(α) + byi | ≤ ε , if 0 < αi < C .
(8)

The tightness of the stopping conditions (8) is controlled
by ε ≥ 0; hereafter we will refer to (8) as theε-KKT
conditions. An advantage of theε-KKT is their simplic-
ity and a low computational overhead:O(m) operations
since∇i(α) is usually available during the course of the
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QP solver. A disadvantage of theε-KKT conditions is a
tricky choice ofε. Providedε = 0, the solutionα satisfy-
ing theε-KKT conditions is guaranteed to be optimal. The
practically applicable QP solvers, however, are guaranteed
to halt in a finite number of iterations only forε > 0. A
typically used value isε = 0.001, e.g., in software pack-
agesSV M light ((Joachims, 1998)) orsvmlib ((Chang &
Lin, 2001)). To our knowledge, there is no theoretical result
connectingε > 0 to the value ofRLOO[f(·; α∗, b∗)] which
is the only desired outcome of the entire computation.

We will illustrate the impact ofε when the LOO error esti-
mator is used for a model selection. LetΘ be a given finite
set of hyper-parametersθ = (C, k). Let RLOO(θ, ε) de-
note the LOO error estimate computed for givenθ using
Algorithm 1 with a QP solver in Algorithm 2. Thus the
estimated LOO errorRLOO(θ, ε) is a function of both the
hyper-parametersθ andε. For a fixed valueε > 0, the
model selection produces the hyper-parameters

θ(ε) = argmin
θ∈Θ

RLOO(θ, ε) . (9)

Figure 1 plots the behavior ofRLOO(θ(ε), ε) and
RLOO(θ(10−4), ε), as well as the cost of the LOO error
computation as a function ofε for three datasets selected
from the IDA repository (cf. Section 5).

The “golden truth” expected risk is given by the left-most
plots in the graphs (usingε = 10−4 for both model se-
lection and risk estimation). The dashed line representing
RLOO(θ(10−4), ε) shows that the expected risk is slightly
overestimated provided we use high accuracy for model
selection and variable accuracy for risk estimation. The
solid line representingRLOO(θ(ε), ε) shows that a low-
accuracy LOO computation used in model selection even-
tually results in overfitting, as a model is selected that
grossly underestimates the expected risk. Interestingly,
both plots coincide until a certain breakdown point beyond
which the low-accuracy LOO estimation runs aground. The
breakdown point varies between0.001 and 0.1 depend-
ing on a dataset. This suggests that a commonly used
ε = 0.001 is a reasonable setting to obtain an accurate
estimate. It is, however, clear from the timing plots that
knowing the right accuracy could significantly lower the
computational cost.

3. Exact Computation of the LOO Error

In this section we show that a response of the optimal clas-
sifier f(xr; α

∗(r), b∗(r)), required when the LOO error is
being computed, can be obtained without the need to solve
the QP task (4) (or its dual (7)) optimally. Let us define
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Figure 1.Influence of the parameterε of theε-KKT conditions on
the LOO error estimate and the required computational time for
three data sets (Banana, German and Image) selected from IDA
repository.
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three convex sets

A+(r) = A(r) ∩
{

(α, b, ξ) |
∑

i∈I

αiyik(xi, xr) + b > 0
}

,

A0(r) = A(r) ∩
{

(α, b, ξ) |
∑

i∈I

αiyik(xi, xr) + b = 0
}

,

A−(r) = A(r) ∩
{

(α, b, ξ) |
∑

i∈I

αiyik(xi, xr) + b < 0
}

.

(10)
Notice, that to computef(xr ; α

∗(r), b∗(r)) we do not nec-
essarily need to know the optimal(α∗(r), b∗(r), ξ∗(r)) but
it suffices to determine whether(α∗(r), b∗(r), ξ∗(r)) be-
longs toA+(r)∪A0(r) or toA−(r). Our method is based
on a simple observation which can be formally stated by
the following theorem:

Theorem 1 For any(α̂, b̂, ξ̂) ∈ A(r) which satisfy

F (α̂, b̂, ξ̂) < min
(α,b,ξ)∈A0(r)

F (α, b, ξ) , (11)

the equationf(xr; α̂, b̂) = f(xr; α
∗(r), b∗(r)) holds.

Proof 1 We proof Theorem 1 by transposition: we show
that f(xr; α̂, b̂) 6= f(xr; α

∗(r), b∗(r)) implies the as-
sumption (11) is violated. Without loss of generality let
f(xr; α̂, b̂) = +1 andf(xr; α

∗(r), b∗(r)) = −1. Let us
define three vectors

θ̂ =





α̂

b̂

ξ̂



 , θ∗(r) =





α∗(r)
b∗(r)
ξ∗(r)



 , θ0 =





α0

b0

ξ0



 .

With a slight abuse of notation, we will handleF as a func-
tion of a single argumentθ ∈ R

2m+1. Then the assump-
tionsf(xr; α̂, b̂) = +1 andf(xr; α

∗(r), b∗(r)) = −1 is
equivalent toθ̂ ∈ A+(r) ∪ A0(r) and θ∗(r) ∈ A−(r).
From (10) it follows that for anŷθ ∈ A+(r) ∪ A0(r)
and θ∗(r) ∈ A−(r) there existsτ ∈ [0, 1] such that
θ0 = ((1 − τ)θ̂ + τθ∗(r)) ∈ A0(r). SinceF is convex,
τ ∈ [0, 1] andF (θ∗) ≤ F (θ̂) we can write

F (θ0) ≤ (1 − τ)F (θ̂) + τF (θ∗(r))

≤ max
{

F (θ̂), F (θ∗(r))
}

= F (θ̂) ,

which shows that there existθ0 ∈ A0(r) such that
F (θ0) ≤ F (θ̂). Using the original notation, this is equiv-
alent toF (α0, b0, ξ0) ≤ F (α̂, b̂, ξ̂). However, this contra-
dicts the assumption (11) which was to be shown.

By Theorem 1, any triplet(α̂, b̂, ξ̂) ∈ A(r) satisfying the
condition (11) determines a classifierf(x; α̂, b̂) which has
the same response on the inputxr as the optimal classifier
f(x; α∗(r), b∗(r)). From a practical point of view, this re-
sult cannot be used directly due to the unknown value of
the right hand side of the inequality (11), i.e.,

min
(α,b,ξ)∈A0(r)

F (α, b, ξ) . (12)

The problem (12) is a convex QP task its dual reads

β∗(r) = max
β∈B0(r)

(

∑

i∈I

βi−
1

2

∑

i∈I

∑

j∈I

βiβjyiyik
′(xi, xj)

)

,

(13)
wherek′(xi, xj) = k(xi, xj) − k(xr, xi) − k(xr , xj) −
k(xr, xr) andB0(r) is a convex feasible set which contains
all β ∈ R

m satisfying

0 ≤ βi ≤ C , i ∈ I \ {r} , and βr = 0 .

We will useH(β) to denote the objective function of (13).
By the weak duality theorem, the inequalityF (α, b, ξ) ≥
H(β) holds for any(α, b, ξ) ∈ A0(r) andβ ∈ B0(r).
This allows us to derive the following useful corollary:

Corollary 1 For any (α̂, b̂, ξ̂) ∈ A0(r) and β ∈ B0(r)
which satisfy

F (α̂, b̂, ξ̂) < H(β̂) , (14)

the equationf(xr; α̂, b̂) = f(xr; α
∗(r), b∗(r)) holds.

Notice, that the condition (14) is satisfiable except for a
very rare degenerate cases. It is easy to show, that if
the condition (14) is not satisfiable then the error estimate
V (yr; f(xr; α

∗(r), b∗(r)) is unstable anyway since there
exists an optimal classifierf(x; α∗(r), b∗(r)) its separat-
ing hyperplane passes through the tested pointxr.

4. Algorithm

A direct application of Corollary 1 would require solving
a mixed set of one quadratic and many linear inequalities.
We are not aware of any simple and efficient algorithm to
solve such task. Instead, we show how to use Corollary 1
to derive a novel stopping condition for a standard iterative
QP solver (cf. Algorithm 2).

Algorithm 3 Proposed QP solver

1: Initialize t := 0, α(t) ∈ B(r) andβ(t) ∈ B0(r).
2: t := t + 1.
3: Updateα(t−1) → α(t), i.e., findα(t) ∈ A(r) such

thatG(α(t−1)) < G(α(t)).
4: If α(t) satisfies theε-KKT conditions then halt other-

wise continue to Step 5.
5: For fixedα(t) compute feasibleb(t) andξ(t) minimiz-

ing F (α(t), b, ξ).
6: Updateβ(t−1) → β(t), i.e., findβ(t) ∈ B0(r) such

thatH(β(t−1)) < H(β(t)).
7: If F (α(t), b(t), ξ(t)) < H(β(t)) holds then halt other-

wise go to Step 2.

The proposed method is described by Algorithm 3 which,
compared to a standard QP solver, involves three additional
Steps 5, 6 and 7. In Step 5, the algorithm computes the
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primal variables(ξ(t), b(t)) minimizing F (α(t), b(t), ξ(t))
which amounts to a simple optimization problem sinceα(t)

is known. In Step 6, the algorithm maximizes the aux-
iliary criterion H(β(t)) w.r.t. β(t). Finally, in Step 7,
the algorithm checks whetherH(β(t)) has become greater
thanF (α(t), b(t), ξ(t)); as soon as this occurs the algorithm
halts sincef(xr; α

(t), b(t)) = f(xr; α
∗(r), b∗(r)) is guar-

anteed according to Corollary 1. Theε-KKT conditions are
retained in Step 3 of Algorithm 3 since the condition (14)
need not be satisfiable in general.

The proposed Algorithm 3 is intended to be used for com-
putation off(xr ; α

∗(r), b∗(r)), i.e., it is called in Step 4
of Algorithm 1 calculating the LOO error, as a replacement
for the standard QP solver. In terms of accuracy of comput-
ing the LOO error, the proposed algorithm cannot perform
worse than the standard one. If theε-KKT conditions are
satisfied earlier than the proposed stopping condition then
both the solvers find an identical classifier. In the oppo-
site case, however, the response of the classifier found by
the proposed algorithm is guaranteed to be optimal. Albeit
the proposed algorithm provides a theoretical guarantee for
the found solution to be optimal, from the practical point
of view both the algorithms will produce an identical LOO
error estimate for a sufficiently lowε. We will empirically
show, however, that the proposed algorithm is numerically
more efficient though it optimizes two QP tasks simulta-
neously compared to the standard approach. The higher
efficiency is achieved by the proposed stopping condition
which is often satisfied earlier than theε-KKT condition.

To increase the numerical performance we also imple-
mented the following simple efficiency test. The proposed
algorithm is not applied on a single example but rather on
a set of examples which cannot be resolved by the suffi-
ciency checks. We experimentally observed, that the effi-
ciency of the proposed algorithm can be reliably estimated
from a few examples. This allows us to switch to using the
standard QP solver when the efficiency of the proposed al-
gorithm is low. The efficiency test, implemented in Step
4 of Algorithm 1, works as follows: We apply the pro-
posed Algorithm 3 on the firstM examples. LetMPrec

denote the number of examples for which Algorithm 3 halt
in Step 7 (i.e., the proposed stopping condition was ap-
plied). If MPrec/M < 0.5 we switch from using Algo-
rithm 3 to using the standard Algorithm 2. We empirically
foundM = 10 to be a good choice number in all our ex-
periments.

5. Experiments

In this section, we experimentally evaluate the proposed
method for computing the LOO error compared to the stan-
dard approach on the datasets from the IDA benchmark

repository1.

The standard approach computes the LOO error using the
procedure described by Algorithm 1. An iterative QP
solver with theε-KKT conditions (Algorithm 2) is called
whenever the solution of the QP task is required. In partic-
ular, we used the Improved SMO algorithm (Keerthi et al.,
2001) to implement the QP solver. In addition, we imple-
mentedα-seeding approach (DeCoste & Wagstaff, 2000)
which re-uses the solutionα∗ (obtained in Step 1 of Algo-
rithm 1) to efficiently set up the initial solution of the QP
solver (initialization ofα(0) in Step 1 of Algorithm 2).

The proposed approach uses the same procedure for com-
puting the LOO error except for a different QP solver used
in Step 4 of Algorithm 1. As the QP solver, we applied
the proposed Algorithm 3 which involves optimization of
the QP tasksG(α(t)) w.r.t. α(t) ∈ B(r) andH(β(t)) w.r.t.
β(t) ∈ B0(r) required in Step 3 and Step 6, respectively.
We again used the Improved SMO algorithm to optimize
G(α(t)) w.r.t. α(t) ∈ B(r) and its straightforward modifi-
cation to optimizeH(β(t)) w.r.t. β(t) ∈ B0(r) (B0(r) does
not contain the equality constraint thus a single variable can
be updated).

The experiments were carried out in Matlab 6 environment
runnig on the Linux machine with the AMD K8 2.2GHz
processor. Algorithms 1,2 and 3 were implemented in C.

The IDA repository consists of13 artificial and real-world
binary classification problems collected from UCI, DELVE
and STATLOG repositories (c.f. (Rätsch et al., 2001)). For
each dataset, there are100 random realizations of training
and testing set (except for Image and Splice sets, where it
is 20). The training parts of the first5 realizations are used
for model selection. The best hyper-parameters(C, k) were
selected from a finite setΘ by minimizing an average LOO
error R̂LOO. The average LOO error̂RLOO is computed
over the5 realizations.

We considered two separate model selection problems for
the linear and the RBF kernel. In the case of the liner ker-
nel, the model was select fromΘ = {C | C = 10i , i =
−2, . . . , 2}×{k | k(x, x′) = 〈x, x′〉} and, in the case of the
RBF kernelΘ = {C | C = 10

i

7
log(500) , i = 0, . . . , 7}×

{k | k(x, x′) = exp(−2
i

7
11‖x−x′‖2), i = 0, . . . , 7}. Hav-

ing the model selected, the classifier is trained for all100
realizations of the training sets and the testing error is com-
puted on the corresponding testing set. The reported testing
errorsR̂TST are averages accompanied with the standard
deviations computed over the100 realizations.

Table 2 shows the average LOO errorsR̂LOO and the test-
ing errorsR̂TST for the best selected models. We experi-
mentally verified, that both the standard and the proposed

1http://ida.first.fraunhofer.de/projects/bench/benchmarks.htm
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approach yielded identical LOO errors since a low value of
ε = 0.001 was used in theε-KKT conditions. Therefore
the errors listed in Table 2 apply for both the approaches.
We also found that the classification errors for the RBF ker-
nel are very similar to the errors reported in (Rätsch et al.,
2001) for the SVM classifier with the RBF kernel tuned
by the5-fold cross-validation. Interestingly, the linear ker-
nel achieves in some cases comparable performance as the
more complex RBF kernel. We can also observe, that the
average LOO errorŝRLOO for the linear kernel are very
good estimators of the testing errorsR̂TST .

Table 3 summarizes the numerical efficiency of the pro-
posed approach and the standard one. The efficiency was
measured in terms of the computational time and the num-
ber of kernel evaluations. The reportedT ime is the overall
computational time spent by a given algorithm to calculate
all the LOO errors needed for the model selection. E.g.,
in the case of the RBF kernel it was necessary to compute
5×64 = 320 LOO error estimates (5 stands for the number
of the training set realizations and64 is the cardinality of
Θ). Similarly, the number of kernel evaluationsKerEval
is the overall value normalized to the number of training
datam, i.e.,KerEval is the number of columns of the ker-
nel matrix. In the case of the standard approach, we listed
the absolute values ofT ime andKerEval. In the case of
the proposed approach, we listed the gained speed up com-
puted as the ratioStandard/Proposed. The last column
of Table 3 contains the valuePrec being the percentage of
the cases when the proposed stopping condition was satis-
fied earlier then theε-KKT conditions, i.e., inPrec cases
the computed LOO error is theoretically guaranteed to be
optimal.

It can be seen, that the proposed method was never slower
(up to the rounding error in computing the speed up) than
the standard algorithm both in terms of the computational
time and the kernel evaluations. A higher performance was
achieved for the linear kernel compared to the RBF ker-
nel. For the linear kernel, the proposed approach was on
average4 times faster than the standard approach. The best
performance was achieved for the Image dataset when the
speed up was nearly13. For RBF kernel, the average speed
up was slightly higher than2, and, in the best case the speed
up was5 for the Banana dataset. It shows that while the ef-
ficiency gained for the RBF kernel is only moderate, in the
case of the linear kernel it is much appealing.

6. Conclusions

The new stopping conditions for an SVM solver proposed
in this contribution allow to determine an optimal solution
accuracy needed for exact computation of a LOO error. Our
new algorithm allows one to significantly reduce complex-
ity of the LOO error computation without a risk of over-

Classification performance
Linear kernel RBF kernel

R̂LOO R̂TST R̂LOO R̂TST

Banana 41.40 47.80 (±4.58) 8.55 10.43 (±0.44)
Breast 27.20 29.00 (±4.83) 23.00 26.06 (±4.91)
Diabetis 22.05 23.44 (±1.70) 21.50 23.27 (±1.65)
Flare 32.85 32.33 (±1.82) 32.31 34.04 (±2.04)
German 24.91 24.06 (±2.22) 23.71 23.61 (±2.23)
Heart 14.24 15.22 (±3.22) 13.53 15.55 (±3.36)
Image 15.48 15.34 (±0.84) 2.94 3.15 (±0.63)
Ring. 23.45 24.59 (±0.67) 1.10 1.60 (±0.11)
Splice 15.36 16.20 (±0.59) 10.60 10.95 (±0.64)
Thyroid 8.43 10.16 (±2.60) 2.29 4.87 (±2.28)
Titanic 21.20 23.01 (±4.62) 15.47 23.99 (±3.47)
Twono. 2.50 2.90 (±0.27) 2.25 2.59 (±0.18)
Wave. 10.90 12.95 (±0.54) 8.85 10.50 (±0.43)

Table 2.Classification performance of the best models selected by
minimizing the LOO error estimate.

fitting due to imprecise optimization. Our experiments on
13 datasets from the IDA repository achieved the average
speedup of 2 to 4 times and the maximal speedup of up to
the factor of 13.

These results demonstrate the importance of investigating
relationships between the optimization accuracy and the
expected risk estimation in machine learning, as suggessed
by recent work (Bartlett & Mendelson, 2006; Bottou &
Bousquet, 2008). To our knowledge, the new algorithm
is the first theoretically justified constructive instrument to
guide an optimization algorithm – for the particular case of
the SVM QP solver and the LOO error – towards achieving
the best attainable expected risk at optimal computational
cost. Future work should explore more general mecha-
nisms of relating parameters of optimization algorthms de-
ployed in machine learning with the estimation of expected
risk.
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