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Abstract

We examine the problem of evaluating a pol-
icy in the contextual bandit setting using
only observations collected during the exe-
cution of another policy. We show that pol-
icy evaluation can be impossible if the ex-
ploration policy chooses actions based on the
side information provided at each time step.
We then propose and prove the correctness
of a principled method for policy evaluation
which works when this is not the case, even
when the exploration policy is deterministic,
as long as each action is explored sufficiently
often. We apply this general technique to the
problem of offline evaluation of internet ad-
vertising policies. Although our theoretical
results hold only when the exploration policy
chooses ads independent of side information,
an assumption that is typically violated by
commercial systems, we show how clever uses
of the theory provide non-trivial and realis-
tic applications. We also provide an empiri-
cal demonstration of the effectiveness of our
techniques on real ad placement data.

1. Introduction

The k-armed bandit problem (Lai & Robbins, 1985;
Berry & Fristedt, 1985; Auer et al., 2002; Even-Dar
et al., 2006) has been studied in great detail, primar-
ily because it can be viewed as a minimal formalization
of the exploration problem faced by any autonomous
agent. Unfortunately, while its minimalism admits
tractability and insight, it misses details that are nec-
essary for application to many realistic problems. For
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instance, the problem of internet advertising can be
viewed as a type of bandit problem in which choosing
an ad or set of ads to display corresponds to choos-
ing an arm to pull. However, this formalization is in-
adequate in practice, as vital information is ignored.
In particular, a successful ad placement policy might
choose ads based on the content of the web page on
which the ads are displayed. The standard k-armed
bandit formulation ignores this useful information.

This shortcoming can be rectified by modeling the
problem as an instance of the contextual bandit prob-
lem (Langford & Zhang, 2007), a generalization of the
k-armed bandit problem that allows an agent to first
observe an input or side information before choosing
an arm. This problem has been studied under differ-
ent names, including associative reinforcement learn-
ing (Kaelbling, 1994), bandits with side information
(Wang et al., 2005), and bandits with experts (Auer
et al., 1995), yet its analysis is far from complete.

In this paper, we study policy evaluation in the contex-
tual bandit setting. Policy evaluation is the problem
of evaluating a new strategy for behavior, or policy,
using only observations collected during the execution
of another policy. The difficulty of this problem stems
from the lack of control over available data. Given
complete freedom, an algorithm could evaluate a pol-
icy simply by executing it for a sufficient number of
trials. However, in real-world applications, we often
do not have the luxury of executing arbitrary policies,
or we may want to distinguish or search among many
more policies than we could evaluate independently.

We begin by providing impossibility results character-
izing situations in which policy evaluation is not possi-
ble. In particular, we show that policy evaluation can
be impossible when the exploration policy depends on
the current input. We then provide and prove the cor-
rectness of a principled method for policy evaluation
when this is not the case. This technique, which we



Exploration Scavenging

call “exploration scavenging,” can be used to accu-
rately estimate the value of any new policy as long as
the exploration policy does not depend on the current
input and chooses each action sufficiently often, even if
the exploration policy is deterministic. The ability to
depend on deterministic policies makes this approach
more applicable than previous techniques based upon
known and controlled randomization in the exploring
policy. We also show that exploration scavenging can
be applied if we wish to choose between multiple poli-
cies, even when these policies depend on the input,
which is a property shared by most real ad-serving
policies. This trick allows exploration scavenging to
be applied to a broader set of real-life problems.

The motivating application for our work is internet
advertising. Each time a user visits a web page, an
advertising engine places a limited number of ads in a
slate on the page. The ad company receives a payment
for every ad clicked by the user. Exploration scaveng-
ing is well-suited for this application for a few reasons.
First, an advertising company may want to evaluate a
new method for placing ads without incurring the risk
and cost of actually using the new method. Second,
there exist logs containing huge amounts of historical
click data resulting from the execution of existing ad-
serving policies. It is economically sensible to use this
data, if possible, when evaluating new policies.

In Section 4, we discuss the application of our meth-
ods to the ad display problem, and present empirical
results on data provided by Yahoo!, a web search com-
pany. Although this application actually violates the
requirement that the exploration policy be indepen-
dent of the current input, the techniques show promise,
leading us to believe that exploration scavenging can
be useful in practice even when the strong assumptions
necessary for the theoretical results do not hold.

To our knowledge, the only similar application work
that has been published is that of Dupret et al. (2007)
who tackle a similar problem from a Bayesian perspec-
tive using different assumptions which lead to different
solution techniques. Our approach has the advantage
that the estimated value is the output of a simple func-
tion rather than an EM optimization, facilitating in-
terpretation of the evaluation method.

2. The Contextual Bandit Setting

Let X be an arbitrary input space, and A = {1, · · · , k}
be a set of actions. An instance of the contextual ban-
dit problem is specified by a distribution D over tuples
(x,~r) where x ∈ X is an input and ~r ∈ [0, 1]k is a vec-
tor of rewards. Events occur on a round by round basis

where on each round t:

1. The world draws (xt, ~rt) ∼ D and announces xt.
2. The algorithm chooses an action at ∈ A, possibly

as a function of xt and historical information.
3. The world announces the reward rt,at

of action at.

The algorithm does not learn what reward it would
have received if it had chosen an action a 6= at.

The standard goal in this setting is to maximize the
sum of rewards rt,at

over the rounds of interaction. An
important subgoal, which is the focus of this paper, is
policy evaluation. Here, we assume that we are given
a data set S ∈ (X ×A× [0, 1])T , which is generated by
following some fixed policy π for T steps. Now, given
a different policy h : X → A, we would like to estimate
the value of policy h, that is,

VD(h) := E(x,~r)∼D[rh(x)].

The standard k-armed bandit is a special case of the
contextual bandit setting in which |X | = 1.

3. Evaluating Policies

In this section, we characterize situations in which pol-
icy evaluation may not be possible, and provide tech-
niques for estimating the value of a policy when it
is. To start, we show that when the exploration pol-
icy π depends on the input x, policy evaluation can
be impossible. Later, we show that when the explo-
ration policy π has no dependence on the current in-
put, there exists a technique for accurately estimating
the value of a new policy h as long as the exploration
policy chooses each action sufficiently often. Finally,
we show that exploration scavenging can be applied in
the situation in which we are choosing between mul-
tiple exploration policies, even when the exploration
policies themselves depend on the current input.

3.1. Impossibility Results

First, note that policy evaluation is not possible when
the exploration policy π chooses some action a with
zero probability. This is true even in the standard k-
armed bandit setting. If the exploration policy always
chooses action 1, and the policy to evaluate always
chooses action 2, then policy evaluation is hopeless.

It is natural to ask if it is possible to build a policy
evaluation procedure that is guaranteed to accurately
evaluate a new policy given data collected using an ar-
bitrary exploration policy π as long as π chooses each
action sufficiently often. The following theorem shows
that this goal is unachievable. In particular, it shows
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that if the exploration policy π depends on the current
input, then there are cases in which new policies h can-
not be evaluated using observations gathered under π,
even if π chooses each action frequently. Specifically,
there can exist two contextual bandit distributions D
and D′ that result in indistinguishable observation se-
quences even though VD(h) and VD′(h) are far apart.
Later we show that in the same context, if we disal-
low input-dependent exploration policies, policy eval-
uation becomes possible

Theorem 1 There exist contextual bandit problems D
and D′ with k = 2 actions, a hypothesis h, and a policy
π dependent on the current observation xt with each
action visited with probability 1/2, such that observa-
tions of π on D are statistically indistinguishable from
observations of π on D′, yet |VD(h)− VD′(h)| = 1.

Proof: The proof is by construction. Suppose xt

takes on the values 0 and 1, each with probability 0.5
under both D and D′. Let π(x) = x be the exploration
policy, and let h(x) = 1 − x be the policy we wish to
evaluate. Suppose that rewards are deterministic given
xt, as summarized in the following table.

Under D Under D
′

rt,0 rt,1 rt,0 rt,1

xt = 0 0 0 0 1
xt = 1 0 1 1 1

Then VD(h) = 0, while VD′(h) = 1, but observations
collected using exploration policy π are indistinguish-
able for D and D′.

3.2. Techniques for Policy Evaluation

We have seen that policy evaluation can be impossible
in general if the exploration policy π depends on the
current input or fails to choose each action sufficiently
often. We now discuss techniques for policy evaluation
when this is not the case. Theorem 2 shows that in
some very special circumstances, it is possible to create
an unbiased estimator for the value of a policy h using
exploration data from another policy. The main result
of this section, Theorem 3, shows that this estimator
is often close to the value of the policy, even when the
stringent conditions in the Theorem 2 are not satisfied.

Theorem 2 For any contextual bandit distribution D
over (x,~r), any policy h, any exploration policy π such
that (1) for each action a, there is a constant Ta > 0
for which |{t : at = a}| = Ta with probability 1, and
(2) π chooses at independent of xt,

VD(h) = E{xt,~rt}∼DT

[

T
∑

t=1

rt,at
I(h(xt) = at)

Tat

]

.

Proof:

E{xt,~rt}∼DT

[

T
∑

t=1

rt,at
I(h(xt) = at)

Tat

]

= E{xt,~rt}∼DT





k
∑

a=1

∑

{t:at=a}

rt,aI(h(xt) = a)

Ta





=

k
∑

a=1

E{xt,~rt}∼DT





∑

{t:at=a}

rt,aI(h(xt) = a)

Ta





=

k
∑

a=1

E(x,~r)∼D

[

Ta

raI(h(x) = a)

Ta

]

= Ex,~r∼D

[

k
∑

a=1

raI(h(x) = a)

]

= VD(h).

The first equality is a reordering of the sum. The sec-
ond and fourth follow from linearity of expectation.

The third equality is more subtle. Consider a fixed
action a. The term

∑

{t:at=a} rt,aI(h(xt) = a)/Ta in-

volves drawing T bandit samples (xt, ~rt) and summing
the term rt,aI(h(xt) = a)/Ta over only the times t for
which the exploration policy chose action a. There
are precisely Ta such trials. The equality then follows
from the fact that the quantity rt,aI(h(xt) = a)/Ta is
identically distributed for all t such that at = a. It is
critical that the exploration policy π chooses at inde-
pendent of xt (to make the numerator identical) and
that Ta is fixed (to make the denominator identical).
If at depends on xt, then these values are no longer
identically distributed and the equality does not hold.
This is important, as we have seen that evaluation is
not possible in general if at can depend on xt.

Conditions (1) and (2) in the theorem are satisfied,
for example, by any policy which visits each action
and chooses actions independent of observations. This
theorem represents the limit of what we know how
to achieve with a strict equality. It can replace the
sample selection bias (Heckman, 1979) lemma used in
the analysis of the Epoch-Greedy algorithm (Langford
& Zhang, 2007), but cannot replace the analysis used
in EXP4 (Auer et al., 1995) without weakening their
theorem statement to hold only in IID settings.

The next theorem, which is the main theoretical re-
sult of this paper, shows that in a much broader set
of circumstances, the estimator in the previous lemma
is useful for estimating VD(h). Specifically, as long as
the exploration does not depend on the current input
and chooses each action sufficiently frequently, the es-
timator can be used for policy evaluation.
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Theorem 3 For every contextual bandits distribution
D over (x,~r) with rewards ra ∈ [0, 1], for every se-
quence of T actions at chosen by an exploration policy
π that may be a function of history but does not depend
on xt, for every hypothesis h, then for any δ ∈ (0, 1),
with probability 1− δ,

∣

∣

∣

∣

∣

VD(h)−

T
∑

t=1

rt,at
I(h(xt) = at)

Tat

∣

∣

∣

∣

∣

≤

k
∑

a=1

√

2 ln(2kT/δ)

Ta

where Ta = |{t : at = a}|.

Proof: First notice that

VD(h) =

k
∑

a=1

Ex,~r∼D [raI(h(x) = a)] . (1)

Fix an action a. Let ti denote the ith time step that
action a was chosen, with ti = 0 if i > Ta. Note that
ti is a random variable. For i = 1, . . . , T define

Zi =











rti,aI(h(xti
) = a)

−Ex,~r∼D[raI(h(x) = a)] if i ≤ Ta,

0 otherwise.

Note that Zi ∈ [−1, 1] and E[Zi] = 0 for all i. Now fix
a positive integer t ∈ {1, . . . , T}. We apply Azuma’s
inequality (see, for example, Alon and Spencer (2000))
to show that for any δ′ ∈ (0, 1), with probability 1−δ′,

1

t

∣

∣

∣

∣

∣

t
∑

i=1

Zi

∣

∣

∣

∣

∣

≤

√

2 ln(2/δ′)

t
, (2)

and so if t ≤ Ta,

∣

∣

∣

∣

∣

Ex,~r∼D[raI(h(x) = a)]−
1

t

t
∑

i=1

rti,aI(h(xti
) = a)

∣

∣

∣

∣

∣

is upper bounded by
√

2 ln(2/δ′)/t. Applying the
union bound with δ′ = δ/(Tk), we see that Equa-
tion 2 holds for all t ∈ {1, . . . , T} and thus for t = Ta

with probability δ/k. Applying the union bound again
yields a bound that holds for all actions. Sum-
ming over actions and applying Equation 1 yields the
lemma.

Note that the counter-example given in Theorem 1
satisfies all conditions of Theorem 3 except for the
assumption on π. Thus, we cannot solve the policy
exploration problem, in general, unless we make as-
sumptions that limit π’s dependence on input.

Corollary 4 For every contextual bandit distribution
D over (x,~r), for every exploration policy π choosing

action at independent of the current input, for every
policy h, if every action a ∈ {1, · · · , k} is guaranteed
to be chosen by π at least a constant fraction of the
time, then as T →∞, the estimator

V̂D(h) =

T
∑

t=1

rt,at
I(h(xt) = at)

Tat

grows arbitrarily close to VD(h) with probability 1.

These observations can be utilized in practice in a sim-
ple way. Given a data set S of observations (xt, at, rat

)
for t = {1, · · · , T}, we can calculate V̂D(h) as above
and use this as an estimator of VD(h). For sufficiently
large data sets S, as long as each action is chosen suf-
ficiently often, this estimator is accurate.

3.3. Tighter Bounds in Special Cases

In some special cases when there is sufficient random-
ization in the exploration policy or the policy h, it
is possible to achieve tighter bounds using a slightly
modified estimator. Theorem 5 shows that the depen-
dence on the number of actions k can be improved in
the special case in which Pr(h(x) = at) = 1/k inde-
pendent of x. This is true, for instance, when either
the exploration policy π or the policy h chooses actions
uniformly at random. We suspect that tighter bounds
can be achieved in other special cases as well.

Theorem 5 For every contextual bandits distribution
D over x,~r with rewards ra ∈ [0, 1], for every sequence
of actions at chosen by an exploration policy π that
may be a function of history but does not depend on
xt and every hypothesis h, if Pr(h(x) = at) = 1/k
independent of x and if |{t : at = a}| > 0 for all a,
then for any δ ∈ (0, 1), with probability 1− δ,

∣

∣

∣

∣

∣

VD(h)−

T
∑

t=1

krt,at
I(h(xt) = at)

T

∣

∣

∣

∣

∣

≤ k

√

2 ln(2k/δ)

T
.

Proof: Since we have assumed that Pr(h(xt) = at) =
1/k independent of xt,

VD(h) = Ex,~r∼D[krh(x)I(h(x) = at)]

= Ex,~r∼D[krat
I(h(x) = at)] .

For all t, define

Zt = krt,at
I(h(xt) = at)− Ex,~r∼D[krat

I(h(x) = at)] .

Zt ∈ [−k, k] and E[Zt,a] = 0. Applying Azuma’s in-
equality and the union bound yields the lemma.
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3.4. Multiple Exploration Policies

So far, all of our positive theoretical results have re-
quired that the exploration policy choose actions in-
dependent of the current input. There do exist special
cases in which exploration data is provably useful for
policy evaluation even when the exploration policy de-
pends on context. We briefly describe one such case.

Suppose we have collected data from a system that
has rotated through K known exploration policies
π1, π2, · · · , πK over time. For example, we may have
logs of historical ad display data from a company that
has used K different ad display policies. Each individ-
ual exploration policy πi may depend on context, but
we assume that the choice of which policy was used by
the system at any given time does not.

We can redefine the action of the bandit problem as a
choice of one of the K base policies to follow; action ai

now corresponds to choosing the ad chosen by policy
πi. Since historically the decision about which policy
to use was made independent of the context x, we can
view the exploration policy as oblivious with respect to
x. Theorem 3 then implies that we can accurately esti-
mate the value of any policy π which chooses from the
set of actions chosen by the K base policies. This can
be more powerful than competing with each historic
policy, because π can make context-dependent choices
about which policy to follow, potentially achieving bet-
ter performance than any single policy.

4. Application to Internet Advertising

Technology companies are interested in finding bet-
ter ways to search both over the myriad pages of the
internet and over the increasingly large selection of
potential ads to display. However, given a candidate
algorithm (or ad-serving policy in the case of online
advertising), a company faces a real-life “exploration-
exploitation” dilemma. The new algorithm could be
better than existing ones, but it could be worse. To
evaluate the performance of an algorithm, the com-
pany might decide to adopt it for a short time on a
subset of web traffic. This method produces accurate
estimates of performance, but the evaluation phase can
be costly in terms of lost revenue if the candidate algo-
rithm performs poorly, and this cost grows linearly in
the number of candidate algorithms that the company
would like to evaluate. Clearly, a method of deter-
mining the strengths or weaknesses of an algorithm
without adopting it would be highly useful.

In this section, we tackle the problem of evaluating a
new ad-serving policy using data logged from an exist-
ing system. We state our results in terms of the online

advertising problem, but everything we discuss can be
applied to web search with little or no modification.

We begin by showing how to directly apply exploration
scavenging techniques to the problem, and discuss the
primary drawbacks of this simple approach. Instead,
we consider a standard simplifying assumption whose
adoption leads to a more realistic method for policy
evaluation. This assumption, that click-through rates
are factorable, leads to another interesting theoretical
problem, estimating the attention decay coefficients
of the click-through rates, which can also be accom-
plished using techniques from Section 3.

4.1. The Direct Approach

The online advertising problem can be directly
mapped to the contextual bandit problem, allowing
us to apply results from Section 3. Here the input
space is the universe of all possible web pages and the
action space contains all slates of ads. The reward is a
bit vector that identifies whether or not each returned
ad was clicked.1 This bit vector can be converted to
a single real-valued reward r in a number of ways, for
instance, by simply summing the components, yielding
the total number of clicks received, and normalizing.
The example would then be used to compute a num-
ber r · I(h(x) = s)/Count(s), where Count(s) is the
number of times the slate s was displayed during all
trials. According to Theorem 3, summing this quan-
tity over all trials yields a good estimator of the value
of the new policy h.

There is a significant drawback to this approach. Due
to the indicator variable, the contribution to the sum
for a single example is zero unless h(x) = s, which
means that the slate chosen by the candidate algo-
rithm h is exactly the same as the slate produced by
the current system π. With a large set of ads and a
large slate size, it is very unlikely that the same slate
is chosen many times, and thus the resulting estimator
for the value of h has an extremely high variance and
may not exist for most slates. In the next section, we
show how a standard assumption in the online adver-
tising community can be used to reduce the variance.

4.2. The Factoring Assumption

The problem described above can be avoided by mak-
ing a factoring assumption. Specifically, we assume
that the probability of clicking an ad can be decom-
posed or factored into two terms, an intrinsic click-
through rate (CTR) that depends only on the web

1The reward function can be modified easily to reflect
the actual revenue generated by each click.
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page x and the ad a, and a position-dependent mul-
tiplier Ci for position i, called the attention decay co-
efficient (ADC). This assumption is commonly used
in the sponsored search literature (Borgs et al., 2007;
Lahaie & Pennock, 2007).

Formally, let P(x, a, i) be the probability that ad a is
clicked when placed in position i on web page x. We
assume that P(x, a, i) = Ci · P(x, a), where P(x, a) is
the intrinsic (position independent) click-through rate
for ad a given input x, and Ci is a position-dependent
constant. Here C1 = 1, so P(x, a) = P(x, a, 1).

A key observation is that this assumption allows us
to transition from dealing directly with slates of ads
to focusing on single ads. Let ` be the number of
ads shown in a slate. Given an example (x, s, ~r), we
can form ` transformed examples of the form (x, ai, r

′
i)

where ai is the ith ad in the slate and r′i = ri/Ci. In
other words, r′i is 1/Ci if the ith ad was clicked, and 0
otherwise; the division by the ADC puts the rewards
on the same scale, so the expected value of the reward
for a fixed pair (x, ai) is P(x, ai).

Let σ(a, x) be the slot in which the evaluation policy h
places ad a on input x; if h does not display a on input
x, then σ(a, x) = 0. For convenience, define C0 = 0.
We define a new estimator of the value of h as

V̂D(h) =

T
∑

t=1

∑̀

i=1

r′iCσ(ai,x)

Tai

, (3)

where Ta is the total number of impressions received
by a (i.e., the total number of times add a is displayed).
Here Ci takes the place of the indicator function used
in the estimates in Section 3, giving higher weights to
the rewards of ads that h places in better slots.

Using the results from Section 3, it is straight-forward
to show that this estimator is consistent as long as the
current ad-serving policy does not depend on the input
webpage x and every ad is displayed. However, to
apply this transformation, we require knowledge of the
ADCs. In the next section we show how to estimate
them, again using nonrandom exploration.

4.3. Estimating Attention Decay Coefficients

Assume that a data set S is available from the execu-
tion of an ad-serving policy π that chooses the tth slate
of ads to display independent of the input xt (though
possibly dependent on history). As before, S includes
observations (xt,~at, ~rt,at

) for t = {1, · · · , T}, where ~at

is the slate of ads displayed at time t and ~rt,at
is the

reward vector. Our goal is to use this data to estimate
the attention decay coefficients C2, . . . , C`.

We first discuss a naive ADC estimator, and then go

on to show how it can be improved. In the following
sections, let C(a, i) be the number of clicks on ad a
observed during rounds in which ad a is displayed in
position i. Let M(a, i) be the number of impressions
of ad a in slot i, i.e., the number of times that the ex-
ploration policy chooses to place ad a in slot i. Finally,
let CTR(a, i) = C(a, i)/M(a, i) be the observed click-
through rate of ad a in slot i, with CTR(a, i) defined
to be 0 when M(a, i) = 0.

4.3.1. The Naive Estimator

Initially, one might think that the ADCs can be calcu-
lated by taking the ratio between the global empirical
click-through rate for each position i and the global
empirical click-through rate for position 1. Formally,

Estnaive(i) :=

∑

a C(a, i)/
∑

a M(a, i)
∑

a C(a, 1)/
∑

a M(a, 1)
.

Unfortunately, as we will see in Section 4.4, this
method has a bias which is often quite large in prac-
tice. In particular, it often underestimates the ratios
Ci due to the fact that existing ad-serving policies gen-
erally already place better ads (with higher P(x, a)) in
the better slots. To overcome this bias, we must design
a new estimator.

4.3.2. A New Estimator

Consider a fixed ad a and a fixed position i > 1.
Clearly if a is placed in position i sufficiently many
times, it is possible to estimate the probability of
a being clicked in position i fairly accurately. If
we also estimate the corresponding click-through rate
for ad a in position 1, we may estimate Ci using
a ratio of these two click-through rates, since Ci =
Ex∼D[P(x, a, i)]/Ex∼D[P(x, a, 1)]. If we perform this
procedure for all ads, we can average the resulting es-
timates to form a single, typically very accurate, esti-
mate. Formally, we propose an estimator of the form

Est~α(i) =

∑

a αaCTR(a, i)
∑

a αaCTR(a, 1)
, (4)

where ~α is a vector of nonnegative constants αa for
each ad a ∈ A.

Theorem 6 If the ad-display policy chooses slates in-
dependent of input and ~α has all positive entries, then
the estimator Est~α in Equation 4 is consistent.

Proof: Consider any fixed ad a and position i, and
suppose that we are only interested in revenue gener-
ated by position i. Let h be the constant hypothesis
that always places ad a in position i. VD(h) is then
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Ex∼DP(x, a, i). From Corollary 4, it is clear that

V̂D(h) =

T
∑

t=1

(rtI(h(xt) = at))

|{t′ : at′ = at}|

converges to VD(h). Here V̂D(h) is precisely CTR(a, i),
so CTR(a, i) converges to Ex∼DP(x, a, i) for all a and
i. This implies that Est~α(p) converges to

∑

a αaEx∼DP(x, a, i)
∑

a αaEx∼DP(x, a, 1)

=

∑

a αaEx∼DCiP(x, a)
∑

a αaEx∼DC1P(x, a)
=

Ci

C1
= Ci .

Theorem 6 leaves open the question of how to choose
~α. If every component of ~α is set to the same value,
then the estimate for Ci can be viewed as the mean
of all estimates of Ci for each ad a. However, it may
be the case that the estimates for certain ads are more
accurate than others, in which case we’d like to weight
those more heavily. In particular, we may want to
pick ~α to minimize the variance of our final estimator.
Since it is difficult to analytically compute the variance
of a quotient, we approximate it by the variance of the
sum of the numerator and denominator, as this tends
to reduce the variance of the quotient. The proof of
the following theorem is omitted due to lack of space.

Theorem 7 The variance of the expression

∑

a

αaCTR(a, i) +
∑

a

αaCTR(a, 1)

subject to
∑

a αa = 1 is minimized when

αa :=
2M(a, i) ·M(a, 1)

M(a, i)σ2
a,1 + M(a, 1)σ2

a,i

,

where σ2
a,i is the variance of the indicator random vari-

able that is 1 when ad a is clicked given that ad a is
placed in position i.

It is undesirable that π is required to have no depen-
dence on the current web page xt when choosing the
slate of ads to display, since most current ad-serving
algorithms violate this assumption. However, as we
have seen in Section 3.1, when this assumption is vio-
lated, exploration scavenging is no longer guaranteed
to work. In the worst case, we cannot trust our esti-
mated ADCs from data generated by an x-dependent
π. Luckily, in practice, it is generally not the case
that extreme scenarios like the counterexample in the
proof of Theorem 1 arise. It is more likely that the
existing ad-serving algorithm and the new algorithm

choose among the same small set of ads to display for
any given context (for example, the set of ads for which
advertisers have placed bids for the current search term
in the sponsored search setting) and the primary dif-
ference between policies is the order in which these
ads are displayed. In such settings it is also the case
that additional opportunities for exploration arise nat-
urally. For example, sometimes ads run out of budget,
removing them from consideration and forcing the ad-
serving algorithm to display an alternate slate of ads.

4.4. Empirical comparison

We are interested in comparing the methods developed
in this work to standard methods used in practice.
A common technique for estimating ADCs borrowed
from the information retrieval literature is discounted
cumulative gain (Järvelin & Kekäläinen, 2002). In re-
lation to our work, discounted cumulative gain (DCG)
can be viewed as a particular way to specify the
ADCs that is not data-dependent. In particular,
given a parameter b, DCG would suggest defining
Ci = 1/logb(b + i) for all i. As shown next, when
we estimated the ADCs using our new method on a
large set of data we get values that are very close to
those calculated using DCG with b = 2.

We present coefficients that were computed from train-
ing on about 20 million examples obtained from the
logs of “Content Match”, Yahoo!’s online advertise-
ment engine. Since we don’t know the true variances
σ2

a,p for the distributions over clicks, we heuristically
assume they are all equal and use the estimator defined
by αa = M(a, p) · M(a, 1)/(M(a, p) + M(a, 1)). The
following table summarizes the coefficients computed
for the first four slots using the naive estimator and
the new estimator, along with the DCG coefficients.
As suspected, the coefficients for the new estimator
are larger than the old, suggesting a reduction in bias.

C1 C2 C3 C4

Naive 1.0 0.512090 0.369638 0.271847
New 1.0 0.613387 0.527310 0.432521
DCG 1.0 0.630930 0.5 0.430677

4.5. Toward A Realistic Application

To reduce the high variance of the direct application
of exploration scavenging to internet advertising, we
made use of the factoring assumption and derived the
estimator given in Equation 3. Unfortunately this new
estimator may still have an unacceptably large vari-
ance. By examining Equation 3, we observe that the
method only benefits from examples in which the ex-
ploration policy and the new policy h choose overlap-
ping sets of ads to display. When ads are drawn from
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a large database, this may be too rare of an event.

Instead of considering policies which rank from the set
of all ads, we can consider policies hπ reordering the
ads which π chooses to display. A good reordering
policy plausibly provides useful information to guide
the choice of a new ranking policy.

We define an alternate estimator

V̂D(hπ) =

T
∑

t=1

∑̀

i=1

r′iCσ′(ai,x) ,

where σ′(ai, x) is the slot that hπ would assign to ad
ai in this new model. This method gives us an (un-
normalized) estimate of the value of first using π to
choose k ads to display in a slate and then using hπ to
reorder them. This approach has small variance and
quickly converges.

To illustrate our method we used a training set of 20
million examples gathered using Yahoo!’s current ad-
serving algorithm π. We let the policy hπ be the pol-
icy that reorders ads to display those with the highest
empirical click-through rate first, ignoring the context
x. We used r = Cj′/Ci, (with coefficients given by
the new unbiased method) to compute the number of
clicks we expect the new policy (using hπ to reorder
π’s slate) to receive per click of the old policy π. Here
j′ is the relative position of ad ai when the ads in the
slate shown by π are reordered (in descending order)
by hπ. This number, which was computed using a test
set of about two million examples, turned out to be
1.086. When we computed the same quantity for the
policy h′π that reorders ads at random, we obtained
1.016. Thus, exploration scavenging strongly suggests
using policy hπ over h′π, matching our intuition.

5. Conclusion

We study the process of “exploration scavenging,”
reusing information from one policy to evaluate a new
policy, and provide procedures that work without ran-
domized exploration, as is commonly required. This
new ability opens up the possibility of using machine
learning techniques in new domains which were previ-
ously inaccessible.

Using the derandomized exploration techniques de-
scribed here, we show how to estimate the value of
a policy reordering displayed ads on logged data with-
out any information about random choices made in
the past. There are several caveats to this approach,
but the results appear to be quite reasonable.

Note that this methodology is simply impossible with-
out considering methods for derandomized explo-

ration, so the techniques discussed here open up new
possibilities for solving problem.
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