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Abstract

Semi-supervised learning aims at taking ad-
vantage of unlabeled data to improve the effi-
ciency of supervised learning procedures. For
discriminative models however, this is a chal-
lenging task. In this contribution, we intro-
duce an original methodology for using un-
labeled data through the design of a simple
semi-supervised objective function. We prove
that the corresponding semi-supervised esti-
mator is asymptotically optimal. The practi-
cal consequences of this result are discussed
for the case of the logistic regression model.

1. Introduction

In most real-world pattern classification problems
(e.g., for text, image or audio data), unannotated
data is plentiful and can be collected at almost no
cost, whereas labeled data are comparatively rarer,
and more costly to gather. A sensible question is thus
to find ways to exploit the unlabeled data in order to
improve the performance of supervised training pro-
cedures. Many proposals have been made in the re-
cent years to devise effective semi-supervised training
schemes (see (Chapelle et al., 2006) for an up-to-date
panorama). In this contribution, we focus on meth-
ods applicable to probabilistic classifiers, that is, clas-
sifiers designed to provide a probabilistic confidence
measure associated with each decision. These classi-
fiers do not necessarily perform better than other alter-
natives – particularly since probabilistic classification
and minimum error classification are related, but dif-
ferent, tasks – but are important in some applications,
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for instance when it comes to predicting the general-
ization error, dealing with uneven error costs, ranking,
combining decisions from multiple sources, etc.

Probabilistic generative models fare easily with the
use of unlabeled data, usually through Expectation-
Maximization (see, e.g., (Nigam et al., 2000; Klein &
Manning, 2004) for successful implementations of this
idea). It is however an extensively documented fact
that discriminative models perform better than Gen-
erative models for classification tasks (Ng & Jordan,
2002). Integrating unlabeled data into discriminative
models is however a much more challenging issue. Put
in probabilistic terms, when learning to predict an out-
put y from an observation x, a discriminative model at-
tempts to fit P (y|x; θ), where θ denotes the parameter.
The role to be played by any available prior knowledge
about the marginal probability P (x) in this context is
not obvious. Several authors indeed claim that knowl-
edge of P (x) is basically useless (Seeger, 2002; Lasserre
et al., 2006), although one of the contribution of this
paper will be to show that this intuition relies on the
implicit assumption that the model is well-specified, in
the sense of allowing a perfect fit of the conditional
probability.

The most common approach is to make the unknown
parameter vector θ depend on the unlabeled data, ei-
ther directly or indirectly. One way to achieve this
goal is to use the unlabeled data to enforce constraints
on the shape of P (y|x): the cluster assumption, for in-
stance, stipulates that the decision boundary should be
located in low density regions (Seeger, 2002; Chapelle
& Zien, 2005). (Grandvalet & Bengio, 2004) use
this intuition to devise a semi-supervised training
method (termed entropy regularization), which com-
bines the usual log-likelihood term with an entropy-
based penalty; see also (Jiao et al., 2006), who extend
this methodology to Conditional Random Fields, (Laf-
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ferty et al., 2001), or (Corduneanu & Jaakkola, 2003)
for related ideas. This approach, as any attempt to dis-
tort the supervised training criterion with supplemen-
tary terms faces two risks: (i) to turn a well-behaved
convex optimization problem into a non-convex one,
fraught with local optima, thus making the results
highly dependent of a proper initialization; (ii) to loose
the asymptotic consistency property of the usual (con-
ditional maximum likelihood) estimator. As a result,
these methods are not guaranteed to improve over a
trivial baseline which would only use the available an-
notated data. They furthermore require a fine tuning
of the various optimization parameters (Mann & Mc-
Callum, 2007). The cluster assumption is also used in
graph-based methods, which exploit the intuition that
unlabeled data points should receive the same label as
their labeled neighbors: in (Zhu & Ghahramani, 2002),
a neighborhood graph is used to iteratively propagate
labels from labeled to unlabeled data points until con-
vergence.

(Lasserre et al., 2006) explores yet another avenue,
introducing two sets of parameters: one for the condi-
tional P (y|x; θ), and one for the marginal P (x; ν): the
case where θ and ν are unrelated corresponds to the
purely discriminative model, where unlabeled data are
of no help; taking θ = ν recovers the traditional gener-
ative model; introducing (via their Bayesian prior dis-
tribution) dependencies between (θ, ν) allows to build
a full range of hybrid models. Finally, we also men-
tion (Mann & McCallum, 2007) who try to also exploit
prior knowledge on the distribution of the labels Y ,
which may be available in some specific applications.

In this paper, we try to challenge the view that un-
labeled data cannot help purely discriminative mod-
els by exhibiting a semi-supervised estimator of the
parameter θ which is asymptotically optimal and, in
some situations, preferable to the usual maximum
(conditional) likelihood estimator. To this aim, we
make the simplifying assumption that the marginal
P (x) is fully known, which is true in the limit of in-
finitely many unlabeled data. An interesting obser-
vation about the proposed method is that it is most
efficient when the Bayes error is very small which cor-
relates well with the intuition underlying most semi-
supervised approaches that unlabeled data is most
useful if one can assume that the classes are “well-
separated”. In addition to the asymptotic results, we
also discuss a number of empirical findings pertaining
to logistic regression.

This paper is organized as follows: in Section 2, we in-
troduce our formal framework and formulate the main
result of the paper (Theorem 1), which is first exposed

in its full generality, then particularized to the case of
the logistic regression. Experiments with the logistic
regression model are discussed in Section 3. Conclud-
ing remarks and perspectives close the paper.

2. Semi-Supervised Estimator

Let g(y|x; θ) denote the conditional probability den-
sity function (pdf) corresponding to a discriminative
probabilistic model parameterized by θ ∈ Θ. In the
following, we will always assume that the class vari-
able Y takes its values in a finite set, Y, with a special
interest for the binary case where Y = {0, 1}. We will
further assume that the input (or explanatory) vari-
able X also takes its values in a finite set X , which
may be arbitrary large.

The training procedure has access to a set of n i.i.d.
labeled observations, (Xi, Yi)1≤i≤n, as well as to a po-
tentially unlimited number of unlabeled observations,
where the quantity of unlabeled data is so large that
we can consider that the marginal probability of X is
fully known.

Finally, for a function f : R
p 7→ R, we denote by

∇zf(z⋆) the p× 1 gradient vector and by ∇zT∇zf(z⋆)
the p × p Hessian matrix in z⋆. When f : R

p 7→ R
r,

the notation ∇zTf(z⋆) will be used to denote the r×p
Jacobian matrix in z⋆.

2.1. Preliminary: A Simple Case

We first consider the case where the “model” of in-
terest is very basic and simply consists in estimating
the complete joint probability of X and Y , which is
denoted by π(x, y). We will also denote by η(y|x) and
q(x), respectively, the conditional and the marginal
probabilities associated with π. Although this case is
not directly of interest for real-life statistical learning
tasks, it highlights the role played by the knowledge of
the marginal q in semi-supervised learning.

It is well known that the maximum-likelihood estima-
tor of π(x, y) defined by

π̂n(x, y) =
1

n

n
∑

i=1

1{Xi = x, Yi = y} (1)

is asymptotically efficient with asymptotic variance
υ(x, y) = π(x, y)(1 − π(x, y)) (assuming that 0 <
π(x, y) < 1).

Assume now that we are given q(x), the marginal
distribution of X, and that 0 < q(x) < 1. It is
easily checked that the maximum-likelihood estima-
tor of π(x, y) subject to the marginal constraint that
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∑

y∈Y π(x, y) = q(x) is given by

π̂s
n(x, y) =

∑n
i=1 1{Xi = x, Yi = y}
∑n

i=1 1{Xi = x} q(x) (2)

where the superscript s stands for “semi-supervised”
and the ratio is recognized as the maximum-likelihood
estimate of the conditional probability η(y|x). As
π̂s

n(x, y) is a ratio of two simple estimators, its asymp-
totic variance can be computed using the δ-method,
yielding

υs(x, y) = π(x, y)(1 − π(x, y)/q(x))

As 0 < π(x, y) ≤ q(x) < 1, υs(x, y) is less than
υ(x, y). Hence, in general the semi-supervised esti-
mator π̂s

n(x, y) and π̂n(x, y) are not asymptotically
equivalent, and π̂s

n(x, y) is preferable. More precisely,
υs(x, y)/υ(x, y) = (1 − π(x, y)/q(x))/(1 − π(x, y))
which tends to zero as π(x, y) gets closer to q(x). In
other words, the performance of π̂s

n(x, y) is all the more
appreciable, compared to that of π̂n(x, y), that y is a
frequent label for x. In this case, knowledge of the
marginal q(x) makes it possible to obtain a precise
estimate of π̂s

n(x, y) ≈ q(x) even with a very limited
number of observations of x.

2.2. General Discriminative Model

We now consider the extension of the previous sim-
ple observation to the case of a general discrimina-
tive probabilistic model; the main difference being the
fact that a given parametric model {g(y|x; θ)}θ∈Θ will
generally not be able to fit exactly the actual condi-
tional distribution η(y|x) of the data. As in the fully-
specified case above, it is nonetheless possible to ex-
hibit a semi-supervised estimator which is asymptot-
ically optimal and preferable to the usual conditional
maximum likelihood estimator defined by

θ̂n = arg min
θ∈Θ

1

n

n
∑

i=1

ℓ(Yi|Xi; θ) (3)

where ℓ(y|x; θ) = − log g(y|x; θ) denotes the inverse of
the conditional log-likelihood function.

Under the (classical) assumptions of Theorem 1 be-
low, 1

n

∑n
i=1 ℓ(Yi|Xi; θ) tends, uniformly in θ, to

Eπ[ℓ(Y |X; θ)] and thus the limiting value of θ̂n is given
by

θ⋆ = arg min
θ∈Θ

Eπ[ℓ(Y |X; θ)] (4)

The maximum likelihood estimator in (3) may also be

interpreted as θ̂n = arg minθ∈Θ Eπ̂n
[ℓ(Y |X; θ)] where

π̂n(x, y) =
1

n

n
∑

i=1

1{Xi = x, Yi = y}

denotes the empirical measure associated with the
sample (Xi, Yi)1≤i≤n, which also coincides with the
maximum likelihood estimate of π(x, y) defined in (1).

If we now assume that the marginal q(x) is available,
we know that π̂n(x, y) is dominated (asymptotically)
by the estimator π̂s

n(x, y) defined in (2), which we here
particularize to

π̂s
n(x, y) =











P

n

i=1
1{Xi=x,Yi=y}

P

n

i=1
1{Xi=x} q(x) if

n
∑

i=1

1{Xi = x} > 0

0 otherwise

(5)

By analogy with the construction used in the
absence of information on q, we now define
the corresponding semi-supervised estimator as
θ̂s

n = arg minθ∈Θ Eπ̂s
n
[ℓ(Y |X; θ)], where the notation

Eπ̂s
n
[f(Y, x)] =

∑

x∈X

∑

y∈Y π̂
s
n(x, y)f(x, y) is used

somewhat loosely here as it may happen that, for finite
n,

∑

x∈X

∑

y∈Y π̂n(x, y) < 1, although π̂n(x, y) sums
to one with probability one, for sufficiently large n. It
is easily checked that θ̂s

n may also be rewritten as

θ̂s
n = arg min

θ∈Θ

n
∑

i=1

q(Xi)
∑n

j=1 1{Xj = Xi}
ℓ(Yi|Xi; θ) (6)

Eq. (6) is a weighted version of (3) where the weight
given to observations that share the same input x
is common and reflects our prior knowledge on the
marginal q(x).

Theorem 1 Let the joint probability of X and Y fac-
torize as π(x, y) = η(y|x)q(x), where q is known, and
define the following matrices

H(θ⋆) = Eq (Vη [∇θℓ(Y |X; θ⋆)|X]) (7)

I(θ⋆) = Eq

[

∇θℓ(Y |X; θ⋆) {∇θℓ(Y |X; θ⋆)}T
]

(8)

J(θ⋆) = Eq [∇θT∇θℓ(Y |X; θ⋆)] (9)

Assume that (1) X and Y are finite sets; (2) π(x, y) >
0 for all (x, y) ∈ X × Y; (3) for all (x, y) ∈ X × Y,
ℓ(y|x; θ) is bounded on Θ; (4) θ⋆ is the unique mini-
mizer of Eπ[ℓ(Y |X; θ)] on Θ; (5) for all (x, y) ∈ X×Y,
ℓ(y|x; θ) is twice continuously differentiable on Θ; (6)
the matrices H(θ⋆) and J(θ⋆) are non singular.

Then, θ̂n and θ̂s
n are consistent and asymptotically

normal estimators of θ⋆, which satisfy

√
n

(

θ̂n − θ⋆

)

L−→N
(

0, J−1(θ⋆)I(θ⋆)J
−1(θ⋆)

)

(10)

√
n

(

θ̂s
n − θ⋆

)

L−→N
(

0, J−1(θ⋆)H(θ⋆)J
−1(θ⋆)

)

(11)

Furthermore, θ̂s
n is asymptotically efficient.
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Theorem 1 asserts that the asymptotic covariance ma-
trix associated with θ̂s

n is optimal. Understanding the
relations between H(θ⋆) and I(θ⋆) is thus important
to assess the asymptotic performance achievable by
any semi-supervised training method which assumes
prior knowledge of q(x). Indeed, the well-known Rao-
Blackwell variance decomposition shows that

I(θ⋆) −H(θ⋆) = Vq (Eη [∇θℓ(Y |X; θ⋆)|X])

As a result, the difference between both estimators will
mostly depend on whether Eη [∇θℓ(Y |X; θ⋆)|X = x]
varies significantly or not around 0 as a function
of x, given that, by definition, θ⋆ is such that
Eq (Eη [∇θℓ(Y |X; θ⋆)|X]) = 0.

Note that in the particular case where the model
is well-specified, in the sense that θ⋆ is such that
g(y|x; θ⋆) = η(y|x) for all (x, y) ∈ X × Y, not
only is Eq (Eη [∇θℓ(Y |X; θ⋆)|X]) null but one in-
deed has the stronger result that for all x ∈ X ,
Eη [∇θℓ(Y |X; θ⋆)|X = x] = 0. This is the only case for
which H(θ⋆) = I(θ⋆), and hence, where both estima-
tors are asymptotically equivalent; it is also well known
that in this case J(θ⋆) = I(θ⋆) so that all asymptotic
covariance matrices coincide with the usual expression
of the inverse of the Fisher information matrix for θ.
Theorem 1 gives formal support to the intuition that
it is impossible to improve over the classic maximum
likelihood estimator for large n’s when the model is
well-specified, even when the marginal q is known.

The results of Theorem 1 are stated in terms of pa-
rameter estimation which is usually not the primary
interest for statistical learning tasks. Due to the non-
differentiability of the 0–1 loss, it is not directly possi-
ble to derive results pertaining to the error probability
from Theorem 1. One may however state the follow-
ing result in terms of the logarithmic risk, in which the
negated log-likelihood ℓ(y|x; θ) is interpreted as a loss
function.

Corollary 2 In addition to the assumptions of
Theorem 1, assume that ℓ(y|x; θ) has bounded
second derivative on Θ. Then, the logarith-
mic risk admits the following asymptotic equiva-
lent: Eπ⊗n{Eπ[ℓ(Y |X; θ̂n)]} = Eπ[ℓ(Y |X; θ⋆)] +
1
2n

trace
{

I(θ⋆)J
−1(θ⋆)

}

+ o
(

1
n

)

, where Eπ⊗n de-
notes the expectation with respect to the train-
ing data (Xi, Yi)1≤i≤n; for the semi-supervised es-

timator θ̂s
n, the first order term is given by

1
2n

trace
{

H(θ⋆)J
−1(θ⋆)

}

.

As a final comment on Theorem 1, note that the form
of the semi-supervised estimator in (6) shows that θ̂s

n

will be consistent also in the presence of covariate shift

(i.e., when the marginal distribution of the training
sample differs from q), whereas the logistic regression
estimates can only be consistent in this case if we
assume that the model is well-specified (Shimodaira,
2000). In the presence of covariate shift however, the
expressions of the asymptotic covariance matrices will
be different.

2.3. Application to Logistic Regression

To gain further insight into the results summarized in
Theorem 1, we consider the example of the logistic
regression model with binary labels Y and input vari-
ables X in R

p; the parameter θ is thus p-dimensional.
In this model, the negative log-likelihood function is
given by ℓ(y|x; θ) = −yθTx + log(1 + eθTx)1. Thus,
the estimation equation which implicitly defines the
value of the optimal fit θ⋆ as the value for which
Eπ [∇θℓ(Y |X; θ⋆)] = 0 may be rewritten as

Eq [X (g(1|X; θ⋆) − η(1|X))] = 0 (12)

Similar direct calculations yield

H(θ⋆) = Eq

[

η(1|X)(1 − η(1|X))XXT
]

(13)

I(θ⋆) = Eq

[{

η(1|X)(1 − η(1|X))

+ (η(1|X) − g(1|X; θ⋆))
2
}

XXT
]

(14)

J(θ⋆) = Eq

[

g(1|X; θ⋆){1 − g(1|X; θ⋆)}XXT
]

(15)

J(θ⋆) is the Fisher information matrix traditionally
found in logistic regression. Interestingly, H(θ⋆) is rec-
ognized as the Fisher information matrix for θ⋆ cor-
responding to the fully supervised logistic regression
model in the well-specified case (i.e. assuming that
g(y|x; θ⋆) = η(y|x)), although we made no such as-
sumption here.

For logistic regression, the difference

I(θ⋆) −H(θ⋆) = Eq

[

{η(1|X) − g(1|X; θ⋆)}2XXT
]

is clearly a term that is all the more significant that
the fit achievable by the model is poor. The second im-
portant factor that can lead to substantial differences
between the asymptotic performances of θ̂n and θ̂s

n is
revealed by the following observation: for a given dis-
tribution π, the largest (in a matrix sense) achievable
value for I(θ⋆) is given by

I(θ⋆) = Eq

[

max{η(1|X), 1 − η(1|X)}XXT
]

whereas H(θ⋆) in (13) may be rewritten as

H(θ⋆) = Eq

[

max{η(1|X), 1 − η(1|X)}
min{η(1|X), 1 − η(1|X)}XXT

]

1Or log(1+e−θTyx) when the labels are coded as {−1, 1}
rather than {0, 1}.
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Figure 1. Boxplots of the scaled squared parameter estimation error as a function of the number of observations. Left:
for logistic regression, n‖θ̂n − θ⋆‖

2; right: for the semi-supervised estimator, n‖θ̂s
n − θ⋆‖

2.
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Figure 2. Boxplots of the scaled excess logarithmic risk as a function of the number of observations. Left: for logistic
regression, n(Eπ⊗n{Eπ[ℓ(Y |X; θ̂n)]}−Eπ[ℓ(Y |X; θ⋆)]); right: for the semi-supervised estimator, n(Eπ⊗n{Eπ[ℓ(Y |X; θ̂s

n)]}−
Eπ[ℓ(Y |X; θ⋆)]).

Hence the difference between I(θ⋆) and H(θ⋆) can only
become very significant in cases where min{η(1|X =
x), 1 − η(1|X = x)} is small, that is, when the prob-
ability of incorrect decision is small, for some values
of x. The overall effect will be all the more significant
that this situation happens for many values of x, or,
in other words, that the Bayes error associated with π
is small.

3. Experiments

3.1. A Small Scale Experiment

We consider here experiments on artificial data which
correspond to the case of binary logistic regression
discussed in Section 2.3. We focus on a small-scale
problem where it is possible to exactly compute error
probabilities and risks so as to completely bypass the
empirical evaluation of trained classifiers. This setting
makes it possible to obtain an accurate assessment of
the performance as the only source of Monte Carlo
error lies in the choice of the training corpus. More

precisely, we consider the case where each observation
consists of a vector of p = 10 positive counts which
sums to k = 3. Hence the logistic regression parame-
ter θ is ten-dimensional and the set X of possible count

vectors contains exactly (p+k−1)!
(p−1)!k! = 220 different vec-

tors.

In this case, it is well-known that one can simu-
late data from well-specified logistic models by re-
sorting to mixture of multinomial distributions. De-
note by α1 the prior probability of class 1, and
by β0 and β1 the vectors of multinomial parame-
ters. Count vectors X generated from the mixture
of multinomial have marginal probabilities q(x) =
α1 mult(x;β1) + (1 − α1)mult(x;β0) and conditional
probabilities P(Y = 1|X = x) = {1 + exp−[(log β1 −
log β0)

Tx + log α1

1−α1

]}−1, where the log is to be un-
derstood componentwise. In the following, we take
α1 = 0.5, i.e., balanced classes, so as to avoid the bias
term.

In order to generate misspecified scenarios, we simply
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Figure 3. Boxplots of the probability of error as a function of the number of observations for a well-specified model. Left:
for the logistic regression; right: for the semi-supervised estimator.

flipped the labels of a few (three in the case shown
on figures. 1–2) x’s taken among the most likely ones.
This label flipping transformation leaves the Bayes er-
ror unchanged to that of the underlying unperturbed
logistic model but the performance achievable by logis-
tic regression is of course reduced. Figures 1 and 2 cor-
respond to a case where the underlying unperturbed
logistic model has a Bayes error of 1.7% and the prob-
ability of error associated with the best fitting logistic
model is of 9.4%. Remember that in these figures, the
only source of randomness is due to the choice of the
training sample, which is repeated 1000 times inde-
pendently for each size of the training sample, from
n = 10 to n = 5000 observations.

As logistic regression is very sensitive to the use of reg-
ularization for small sample sizes (here, when n is less
than one thousand), both (3) and (6) were regular-
ized by adding a L2 penalty term of the form ρn‖θ‖2,
where ρn has been calibrated independently for each
value of n. This being said, the optimal regularization
parameter was always found to be within a factor 2 of
ρn = 1/n for (3) and ρn = 1

n

∑

{x:
P

1

i=1
1{Xi=x}>0} q(x)

for (6). The effect of regularization is also negligible for
the two rightmost boxplots in each graph (i.e., when
n is greater than 1000). On figures 1 and 2, the su-
perimposed horizontal dashed lines correspond to the
theoretical averages computed from Theorem 1 and
Corollary 2, respectively.

When n is larger than one thousand, figures 1 and 2
perfectly correlate with the theory which predicts some
advantage for the semi-supervised estimator as we are
considering a case where the Bayes error is small and
the model misspecification is significant. For large
values of n, the semi-supervised estimator not only
achieves better average performance but also does
so more constantly, with a reduced variability. For
smaller values of n, the picture is more contrasted,

particularly when n ranges from 50 to 100 where the
semi-supervised estimator may perform comparatively
worse than the logistic regression. In this example, in
terms of the probability of error, the semi-supervised
estimator performs marginally better than logistic re-
gression when n = 10 and n = 5000 (although the
difference is bound to be very small in the latter case)
and somewhat worse in between.

As expected, the difference between both approaches
for large values of n decreases for scenarios with
larger error probabilities. In those scenarios, the semi-
supervised estimator performs worse than logistic re-
gression for smaller values of n and equivalently for
large values of n. A finding of interest is the fact
that for well-specified models (i.e., with data generated
from a multinomial mixture model) with low Bayes er-
ror, the semi-supervised approach does perform better
than logistic regression, for small values of n. This ef-
fect can be significant even when considering the prob-
ability of error of the trained classifiers, as exemplified
on Figure 3 in a case where the Bayes error is 6.3%.
This observation is promising and deserves further in-
vestigation as the analysis of Section 2 only explains
the behavior observed for large values of n, which in
the case of well-specified models results in the two ap-
proaches being equivalent.

3.2. Text Classification Experiment

To evaluate our methodology on a more realistic test
bed, we have used a simple binary classification task,
consisting in classifying mails as spam or ham based
on their textual content. The corpus used is the Spa-
mAssassin corpus (Mason, 2002), which contains ap-
proximately 6 000 documents. Adapting our technique
to real-world data requires to provide an estimate for
the marginal q(x). This was carried out by perform-
ing a discrete quantification of the data vectors as fol-
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lows. We first use unsupervised clustering techniques
to partition the available unlabeled collection of docu-
ments in k clusters. More specifically, we used a mix-
ture of multinomial model as in (Nigam et al., 2000)
with k = 10 components. We then simply adapt (6)
by replacing q(Xi) by the empirical frequency of the
cluster to which Xi belongs, likewise the denominator
∑n

j=1 1{Xj = Xi} is replaced by the number of train-
ing documents belonging to the same cluster as Xi.
We believe that this methodology is very general and
makes the proposed approach applicable to a large va-
riety of data. In effect, observations belonging to clus-
ters which are underrepresented in the training corpus
have higher relative weights, while the converse if true
for observations belonging to overrepresented clusters.
Note that, at this stage, no attempts have been made
at tuning the number k of clusters, although intuition
suggests that it would probably be reasonable to in-
crease k (slowly) with n.
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Figure 4. Boxplots of the error rates for, L50: logistic re-
gression with n = 50; S50: semi-supervised estimator with
n = 50; L300 and S300, idem with n = 300.

We tested the method with n = 50 and n = 300
randomly chosen training documents, the remaining
mails serving as the test set; each trial gave rise to
50 Monte Carlo replications. For each value of n, the
best regularization parameter was determined experi-
mentally both for the usual logistic regression and the
semi-supervised estimator. Each document is here rep-
resented as a count vector of dimension 1500. The
resulting error rates are plotted as boxplots on Fig-
ure 4. Although the difference between both meth-
ods is certainly not very significant in this prelimi-
nary experiment, we note that, as in the simple case
of Section 3.1, the semi-supervised estimator provides
a more less variable performance when n is small.

4. Conclusion

In this contribution, we have tried to address the
problem of semi-supervised learning without using any

prior idea on what type of information is to be pro-
vided by the unlabeled data. The result of Theorem 1
provides both proper theoretical support for the claim
that the unlabeled data does not matter asymptot-
ically when the model is well-specified and a better
understanding of the cases where the unlabeled data
does matter. In particular, it confirms the intuition
that unlabeled data is most useful when the Bayes er-
ror is small. One advantage of the proposed method
is that it does not compromise the simplicity of the
maximum likelihood approach because the weighted
semi-supervised criterion stays convex. In addition,
one could easily incorporate prior knowledge as used
in other semi-supervised approaches: for instance the
“cluster assumption” can be implemented by modi-
fying (5) so as to incorporate a Bayesian prior that
connects conditional probabilities for neighboring val-
ues of the input vector. In Section 3.2, we suggested a
means by which the method can be extended to larger
scales problem, including applications in which the fea-
ture vector is either continuous or has a more complex
structure. We are in particular currently investigat-
ing the extension of the proposed approach to the case
of sequence labelling with conditional random fields.
Another open issue is the theoretical analysis of the
behavior of the proposed criterion when n is small,
which cannot be deduced from the asymptotic analy-
sis presented here.

Appendix: Sketch of Proofs

First note that (10) is the well-known result that per-
tains to the behavior of the maximum likelihood es-
timator in misspecified models – see, for instance,
(White, 1982) or Lemma 1 of (Shimodaira, 2000).

Now, the fact that θ̂s
n = arg minθ∈Θ Eπ̂s

n
[ℓ(Y |X; θ)] im-

plicitly defines the semi-supervised estimator θ̂s
n as a

function of the maximum-likelihood estimator of the
conditional probabilities

η̂n(y|x) =

∑n
i=1 1{Xi = x, Yi = y}
∑n

i=1 1{Xi = x}

In our setting, the conditional probability η may be
represented by a finite dimensional vector block de-
fined by η = (η(x1), . . . ,η(xd))

T, where η(xi) =
(η(y1|xi), . . . , η(yk|xi))

T, {x1, . . . , xd} denote the ele-
ments of X , and, {y0, . . . , yk} denote the elements of
Y. As usual in polytomous regression models, we omit
one of the possible values of Y (by convention, y0) due
to the constraint that

∑

y∈Y η(y|x) = 1, for all x ∈ X .
The estimator η̂n is defined similarly with η̂n(y|x) sub-
stituted for ηn(y|x). η̂n is the maximum likelihood
estimator of η and it is asymptotically efficient with
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asymptotic covariance matrix given by K−1(η), the
inverse of the Fisher information matrix for η, block-
defined by

K−1(η) = diag
(

K−1(x1;η), . . . ,K−1(xd;η)
)

where

K−1(xi;η) = q(xi)
−1

{

diag (η(xi)) − η(xi)η
T(xi)

}

To obtain the asymptotic behavior of the semi-
supervised estimator θ̂s

n, remark that θ̂s
n is obtained

as a function ψ of η̂n, where ψ is implicitly defined by
the optimality equation s(η, ψ(η)) = 0 where s is the
(negative of the) score function defined by

s(η, θ) = ∇θEπ [∇θℓ(Y |X; θ)] =
∑

x∈X

q(x)
∑

y∈Y

η(y|x)∇θℓ(y|x; θ) (16)

Because θ⋆ = ψ(η) and θ̂s
n = ψ(η̂n), θ̂s

n is an asymptot-
ically efficient estimator of θ⋆ with asymptotic covari-

ance matrix given by ∇ηTψ(η)K−1(η)
{

∇ηTψ(η)
}T

.
The Jacobian matrix ∇ηTψ(η) may be evaluated
thanks to the implicit function theorem as

∇ηTψ(η) = {∇θTs(η, θ⋆)}−1 ∇ηTs(η, θ⋆)

From the definition of the score function in (16), it
is obvious that ∇θTs(η, θ⋆) = J(θ⋆). In order to cal-
culate ∇ηTs(η, θ⋆), we differentiate the rightmost ex-
pression in (16) using the fact that η(y0|x) = 1 −
∑

y 6=y0
η(y|x) to obtain

∂s(η, θ)

∂η(x|y) = q(x) [∇θℓ(y|x; θ) −∇θℓ(y0|x; θ)]

The expression given in Theorem 1 or the asymp-
totic variance of θ̂s

n follows by computing the product

∇ηTs(η, θ⋆)K
−1(xi;η)

{

∇ηTs(η, θ⋆)
}T

– which facto-
ries into blocks of size k – and using the fact that
η(y0|x) = 1 − ∑

y 6=y0
η(y|x).

Corollary 2 is based on the classical asymptotic ex-
pansion of Eπ[ℓ(Y |X; θ̂n)] − Eπ[ℓ(Y |X; θ⋆)] as 1

2 (θ̂n −
θ⋆)

TJ(θ⋆)(θ̂n − θ⋆) + op(
1
n
), see, for instance, (Bach,

2006).
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