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Abstract

This paper introduces a novel machine learn-
ing model called multiple instance ranking
(MIRank) that enables ranking to be per-
formed in a multiple instance learning set-
ting. The motivation for MIRank stems
from the hydrogen abstraction problem in
computational chemistry, that of predicting
the group of hydrogen atoms from which
a hydrogen is abstracted (removed) during
metabolism. The model predicts the pre-
ferred hydrogen group within a molecule by
ranking the groups, with the ambiguity of
not knowing which hydrogen atom within the
preferred group is actually abstracted. This
paper formulates MIRank in its general con-
text and proposes an algorithm for solving
MIRank problems using successive linear pro-
gramming. The method outperforms multi-
ple instance classification models on several
real and synthetic datasets.

1. Introduction

This paper introduces a new machine learning
paradigm called multiple instance ranking (MIRank),
bringing the concept of ranking to the framework of
multiple instance learning. Some problems that MI-
Rank could potentially solve based on prior data are:

1. For a given country, predict the city that contains
the most profitable store.

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

2. For a given state, predict the congressional dis-
trict that contains the politician that delivers the
most subsidies.

3. For a given document, predict the para-
graph/passage that contains the most pertinent
sentence/phrase/word.

4. For a given molecular class, predict the molecule
with the conformation having the highest human
immunodeficiency virus (HIV) inhibition efficacy.

5. For a given state, predict the division that con-
tains the town with the highest median housing
unit price.

6. For a given molecule, predict the site of
metabolism from which a hydrogen atom is ab-
stracted (removed).

It is this last application, that of hydrogen abstraction
from the field of computational chemistry, that moti-
vated this work. The fifth application, which involves
making predictions from the census, is also explored
here. Later in this paper, a general formulation for
multiple instance ranking is provided, an algorithm
for MIRank is proposed, and this algorithm is tested
on datasets that stem from both applications as well
as synthetic data.

As introduced by Dietterich et al. (1997), the setup
for multiple instance learning differs somewhat from
the standard learning framework. In standard classi-
fication, the task is to predict the class of each item.
Each item has a corresponding binary classification la-
bel, and features defined for each item are used to build
the model. In multiple instance classification (MIC),
each item belongs to a bag. The task is to predict the
class of each bag of items. Features are defined for
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Figure 1. Schematic of multiple instance classification.
Bags are ellipses, active bags contain stars and inactive
bags contain parallelograms.

each item, but the class label is assigned to each bag.
For simplicity of presentation, assume there are two
classes: active and inactive. By definition, an active
bag must contain at least one active item, while an
inactive bag contains exclusively inactive items. It is
not known which item is active.

Figure 1 illustrates MIC, in which bags are ellipses,
items in active bags are represented as stars, and items
in inactive bags are marked as parallelograms. The
straight line is the separating line representing the clas-
sification function. Notice that at least one item from
each active bag is found above the line, while all items
in inactive bags are located below the line.

The difficulty is that there exists an ambiguity as to
which items in an active bag are actually active. For
example, consider the drug discovery application (Di-
etterich et al., 1997), with molecules as bags and con-
formations (three-dimensional molecular shapes that
differ from each other by the rotation of atom groups
about one or more bonds) as items. If a molecule pos-
sesses one—or possibly several—conformations that
are active, then it is known that the molecule is ac-
tive. However, it is not known which conformation
is active. On the other hand, if none of a molecule’s
conformations are active, then the molecule is deemed
inactive, and in this case, it is inferred that all of that
molecule’s conformations are inactive.

Other applications of MIC include automatic image
annotation (Andrews et al., 2003), context-based im-
age indexing (Maron & Ratan, 1998), text catego-
rization (Andrews et al., 2003) and hard-drive fail-
ure prediction (Murray et al., 2005). Algorithms for
MIC stem from diverse density (Maron & Ratan, 1998;
Zhang & Goldman, 2001), neural networks (Ramon &

Figure 2. Schematic of multiple instance ranking. Boxes
are rectangles, bags are ellipses, preferred bags contain
stars, and other bags contain parallelograms.

Raedt, 2000), and generalisations of support vector
machines (Andrews et al., 2003; Mangasarian & Wild,
2008). The drug discovery application later inspired
Ray & Davis (2001) to formulate multiple instance re-
gression, where this time the response assigned to each
bag is a real number quantifying the activity of the
molecules.

Multiple instance ranking differs in that a classification
label is not known for each bag. Rather, some pref-
erence information is available for pairs of bags. For
example, it may be known that bag A ranks higher
than both bags B and C, while the relative ranking
of bags B and C may not be known. In many appli-
cations, even more structure exists. In these cases, it
is convenient to think of every bag as belonging to a
box. Within each box, exactly one bag ranks higher
than the other ones in the box, and this bag is des-
ignated the preferred bag. It is not known how the
other bags in the box rank with respect to each other.
Further, it is not known how bags rank with respect to
each other across boxes. Additionally, there remains
the ambiguity of which items in the preferred bags are
preferred and which ones are not preferred. Figure
2 illustrates the situation. Large rectangles represent
boxes. As was the case in Figure 1, bags are ellipses,
items in preferred bags are represented as stars and
items in the other bags are marked as parallelograms.
Instead of being fixed, the separating line (represent-
ing the ranking function) slides from one box to the
next. For each box, the ranking function separates at
least one item of the preferred bag from the remaining
items of the box.

The hydrogen abstraction application fits perfectly
into this framework. For each molecule (box), the task
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is to find the group (bag) from which a hydrogen atom
(item) is abstracted. It is not known which hydrogen
atom is abstracted, only to which group it belongs.

The organization of this paper is as follows. Section
2 defines some mathematical notation. Section 3 mo-
tivates multiple instance ranking through the compu-
tational chemistry problem of hydrogen abstraction.
Multiple instance ranking is formulated, and an al-
gorithm for MIRank is proposed, in Section 4. The
model and algorithm are generalized to nonlinear MI-
Rank problems in Section 5. Section 6 describes the
datasets used in this paper, and Section 7 specifies the
modeling results. Finally, Sections 8 and 9 constitute
a discussion and outlook, respectively.

2. Notation

Let x denote a vector in Rn and let xT mark the
transpose of x. Let 0 denote the vector of all zeros
and e denote the vector of all ones. Let |x| denote
the cardinality of x, that is, the number of entries in
the vector. Let ‖x‖1 denote the 1-norm of x, equal
to the sum of the absolute values of the entries of the
vector. If x has nonnegative entries, then this equals
eT x. Let X ∈ Rk×n and H ∈ Rm×n denote matrices.
I and J indicate index sets. The cardinality of the
set I is indicated by |I|. The matrix XI indicates the
matrix in R|I|×n with rows restricted to the index set
I. A kernel matrix K(X,H ′) maps Rk×n and Rn×m

into Rk×m. Each entry of the mapping results from a
function (such as the radial basis function) applied to
one row of X applied to one row of H.

3. Motivating application

Bioavailability of a drug, or its ability to be adminis-
tered orally, is a major concern to the pharmaceuti-
cal industry. This characteristic depends on a drug’s
capability to withstand degradation by intestinal and
hepatic enzymes during first-pass metabolism in or-
der to cross the intestinal lining and make it into
the bloodstream so that its medicinal effect may be
felt (Thummel et al., 1997). Hence, this process of
drug metabolism needs to be better understood. More
specifically, it is important to discover the attributes
of molecules that identify sites which are vulnerable to
enzymatic degradation.

Cytochrome CYP3A4 is but one of many metabolis-
ing enzymes found in the human liver and small intes-
tine, yet this enzyme metabolises nearly 50% of mar-
keted drugs (Guengerich, 1999; Rendic, 1997). For
CYP3A4 substrates, approximately half of the known
metabolism reactions occur via hydroxylation, the rate

Figure 3. Stick model of an Adinazolam molecule. Large
spheres represent nonhydrogen atoms while small spheres
represent hydrogen atoms. Two groups of hydrogens are
evidenced. The top group, indicated by a thick arrow, has a
hydrogen abstracted during metabolism. The lower group,
indicated by a thin arrow, does not.

limiting step of which is hydrogen atom abstraction
(Sheridan et al., 2007). Knowing where a molecule is
preferentially oxidized by this cytochrome would aid
the modification of compounds to improve their kinetic
or pharmacological profiles (Afzelius et al., 2007).

Normally, experimental techniques are used to identify
the molecular sites susceptible to metabolism. This is
a time- and labor-intensive process. While in vitro

studies are increasingly high throughput, the in silico

identification of metabolic liability early on in the drug
discovery process will help prevent taking forward poor
drug candidates. In addition, the constraints of the
biological problem fit perfectly into the framework of
a MIRank application, leading to a potential in silico

solution.

The goal is to build a model that predicts, for each
molecule, the site of abstraction of a hydrogen atom
during metabolism. In order to accomplish this, in-
dividual hydrogen atoms are first grouped together
according to molecular equivalence: hydrogens are
placed within the same group if and only if the ab-
straction of any hydrogen from within the group would
result in the same metabolised molecule. In this way,
groups are equivalent representations of potential sites
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of metabolism. Note that experimental data do not
show which individual hydrogen is abstracted during
metabolism, but rather to which group this hydrogen
atom belongs. This setup perfectly fits that of mul-
tiple instance ranking. Molecules can be viewed as
boxes, groups as bags, and individual hydrogens as
items. Figure 3 illustrates these using a stick repre-
sentation of a molecule.

Two prior modeling attempts are described. Firstly,
Singh et al. (2003) chose the hydrogen atom that has
the minimum estimated abstraction energy, with a suf-
ficiently large surface area (of 8 squared Angstroms),
as the abstracted hydrogen. Allowing 1 guess per
molecule, their rule-based model performed correctly
in 44% of molecules. Sheridan et al. (2007) later
reported that this model has a prediction rate of
51%, allowing for 2 guesses per molecule. Secondly,
Sheridan et al. (2007) assembled a database of 316
molecules (including the 50 molecules used by Singh
et al. (2003)). They used a random forest applied to
molecular descriptors, and found a model that cor-
rectly predicted the site of abstraction for 77% of
molecules, allowing for 2 guesses per molecule.

4. Formulation

Let (I, J) denote an ordered pair of bags where I and
J are lists of indices referring to their items. Let xi

denote a vector of n features for an item i, and let
matrix XI ’s rows contain the features for each index
in I. Further let f denote the ranking function. Then
the statement bag I is preferred over bag J is expressed
mathematically as

max
i∈I

f(xi) > max
j∈J

f(xj).

The maximum operator on the right hand side can be
replaced with all of the items it operates over, hence
the inequality is rewritten as

max
i∈I

f(xi) > f(xj) ∀ j ∈ J.

The maximum operator on the left hand side is also
replaced. A convex combination of the items in bag
I is taken, following the lead of Mangasarian & Wild
(2008) in their formulation of MIC. This convex com-
bination is achieved through vector vI,J whose cardi-
nality is that of I. In a slight abuse of notation, vI,J

means the vector corresponding to the pair of bags
(I, J). This vector is nonnegative vI,J ≥ 0, and its
entries sum to one: eT vI,J = 1. This vector multi-
plies matrix XI :

f(XT
I vI,J ) > f(xj) ∀ j ∈ J.

Let the model be linear defined by vector w, i.e.

f(x) = xT w. (1)

In this case, we have

vI,J
T XIw > xT

j w.

This paper focuses on linear models, because chemists
are interested model interpretation. However, this for-
mulation is readily kernelized, as discussed in Section
5.

Now introduce an empirical risk scalar ξI,j based
on the hinge-loss, allowing for errors in training the
model:

vI,J
T XIw − xT

j w ≥ 1 − ξI,j .

This inequality resembles the main constraint in
Joachims’ ranking support vector machine (2002). It
is also the key constraint in an optimization problem
whose objective function is to minimize

νLemp(ξ) + Lreg(w)

where ν > 0 is the tradeoff parameter and Lemp and
Lreg are arbitrary loss functions.

Choosing the 1-norm for both loss functions makes the
objective linear in the variables, a choice that was also
made by Mangasarian & Wild (2008). Furthermore,
using the 1-norm on w makes for sparse models, fa-
cilitating the interpretability of linear models. There-
upon, the 1-norm MIRank optimization problem is

min
ξ,w,vI,J

νeT ξ + ‖w‖1 (2)

subject to

vI,J
T XIw − xT

j w ≥ 1 − ξI,j ∀ (I, J, j) (3)

eT vI,J = 1 ∀ (I, J) (4)

vI,J ≥ 0 ∀ (I, J) (5)

ξ ≥ 0. (6)

The entries of empirical risk vector ξ are ξI,j as they
appear in the first constraint. This notation signifies
that, for each pair (I, J), there is an empirical risk
contribution from each item j ∈ J . These are non-
negative quantities, as per 6. Note that there are as
many vectors vI,J as there are pairs (I, J). These vec-
tors are forced to be nonnegative and to sum to one in
constraints 4 and 5.

Since the first constraint is linear and the remaining
terms are linear, this is a bilinear optimization prob-
lem. We use the successive linear programming algo-
rithm given in Algorithm 1 to find a locally optimal
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Algorithm 1 Multiple instance ranking algorithm

Select tolerance τ and tradeoff parameter ν.
Initialise uI,J = e

|I| ∀ (I, J).
repeat

Set vI,J = uI,J ∀ (I, J).
Fix the vI,J ’s and solve the linear program 2-6
for ξ and w.
Fix w and solve the linear program 2-6 for ξ and
the uI,J ’s.

until ‖vI − uI‖1 ≤ τ ∀ (I, J)

solution of the bilinear problem. This proposed MI-
Rank algorithm belongs to a family of algorithms that
has proven to find good local solutions on a variety of
bilinear machine learning problems. The subproblem
solutions are not necessarily unique, but this has no
impact on algorithm convergence.

The convergence proof for the MIC algorithm in Man-
gasarian & Wild (2008) can be readily adapted to Al-
gorithm 1. Specifically, the algorithm converges be-
cause the sequence of objective function values

{νeT ξ + ‖w‖1}

at each iteration is nonincreasing and bounded below
by zero, and every accumulation point satisfies a lo-
cal minima property. The formal proof is omitted for
brevity; see Mangasarian & Wild (2008).

Algorithm 1, as well the Mangasarian & Wild
(2008) algorithm for MIC, were implemented in Mat-
lab using the linear programming solver MOSEK
(www.mosek.com).

5. Nonlinear Formulation

A nonlinear MIRank function can be generated by
kernel transformations (Shawe-Taylor & Cristianini,
2004). We adopt the notation and direct kernel ap-
proach used for MIC in Mangasarian & Wild (2008).
The linear ranking function 1 is replaced by the non-
linear function:

f(x) = K(xT ,HT )α (7)

where x ∈ Rn is an item, α ∈ Rm are the dual vari-
ables and the matrix H ∈ Rn×m has as its rows all
of the m items found collectively in all of the bags
and boxes, and K(xT ,HT ) is an arbitrary kernel map.
The bilinear program generating the nonlinear MI-
Rank function becomes:

min
ξ,α,vI,J

νeT ξ + ‖w‖1 (8)

subject to

vI,J
T K(XI ,H

T )w−K(xT
j ,HT )α ≥ 1−ξI,j ∀ (I, J, j)

(9)

eT vI,J = 1 ∀ (I, J) (10)

vI,J ≥ 0 ∀ (I, J) (11)

ξ ≥ 0. (12)

The kernel formulation remains a bilinear program and
thus can be solved using Algorithm 1 by substituting
α for w and bilinear program 8-12 for bilinear program
2-6.

6. Datasets

In addition to the hydrogen abstraction dataset, sev-
eral additional datasets are used in modeling experi-
ments. All three are described here.

6.1. CYP3A4 substrate dataset

The CYP3A4 substrate dataset is made up of 227
small drug-like compounds. A series of 36 descriptors
for each hydrogen atom for all molecules are calcu-
lated:

• the charge of the hydrogen;

• the surface area of the hydrogen;

• the non hydrogen surface area of the base atom
the hydrogen is attached to;

• the hydrophobic moment: the hydrogen’s location
with regards to the hydrophobic or hydrophilic
end of the molecule;

• the span: a measure of whether the candidate hy-
drogen is located at the end or within the middle
of the molecule.

• the topological neighborhood: the distributions of
atom types within a various topological distances
from the hydrogen.

Recall that, for each molecule, the goal is to predict
from which group a hydrogen atom is abstracted, and
it is not known which hydrogen from the abstracted
site is removed.

These 227 molecules form are a subset of the 305 non-
proprietary molecules used by Sheridan et al. (2007),
and represent all those for which descriptor generation
could be completed.
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Figure 4. Synthetic dataset visualisation. Preferred bags
contain circles and other bags contain dots. Sliding line
represents the ranking function found by MIRank that sep-
arates at least one circle from remaining items in each box.

6.2. Synthetic datasets

This dataset consists of 227 boxes, five bags per box
and five items per bag. There are two features. Each
feature is calculated as follows:

µbox
i + µ

bag
j + µitem

k

with µbox
i drawn from the uniform distribution

U(−1, 1), µ
bag
j drawn from the distribution U(−A,A)

and µitem
k drawn from the distribution U(−B,B). Put

in words, the center of each box is chosen from a uni-
form distribution, and the center of each bag with
respect to its box is chosen from a different uniform
distribution, and each item with respect to its bag is
chosen from yet another uniform distribution. Param-
eters A and B characterize these synthetic datasets.
For each item, the response is the sum of the features.
The goal is, for each box, to find the bag containing the
item of greatest response. Five boxes of this dataset
are portrayed as Figure 4. It illustrates the difficulty in
constructing a linear function separating at least one
circle from each box from the remaining circles and
dots, as MIC attempts to do. On the other hand, it
it possible to find a ranking function (the sliding line)
that does this for each box, as MIRank does.

Different values for dataset parameters A and B were
attempted:

• Synthetic-1 set A = B = 0.01.

• Synthetic-2 set A = 0.1 and B = 0.01.

Table 1. Prediction accuracies

Dataset MIC MIRank

CYP3A4 substrate 67.1% ± 7.1 70.9% ± 6.9
Synthetic-1 90.8% ± 8.6 99.8% ± 0.53
Synthetic-2 96.8% ± 4.6 99.1% ± 1.8
Synthetic-3 95.5% ± 8.3 99.9% ± 0.38
Synthetic-4 95.7% ± 5.2 99.7% ± 0.91
Census-16h 52.8% ± 17.4 60.3% ± 15.1
Census-16l 46.2% ± 17.7 57.5% ± 16.0

• Synthetic-3 set A = 0.01 and B = 0.1.

• Synthetic-4 set A = B = 0.1.

6.3. Census datasets

The two census datasets (census-16h and
census-16l) belong to the Data for Evaluat-

ing Learning in Valid Experiments (DELVE,
http://www.cs.toronto.edu/∼delve/) reposi-
tory. It consists of 22784 towns spread amongst the
50 states of the United States of America. This study
only considered the 3054 towns of more than 10000
inhabitants. Each town is assigned a 5-digit Federal
Information Processing Standard (FIPS) place code
(that is not a zip code). Typically, this dataset is used
in a regression setting to model the response—which is
the town’s median housing unit price. The census-16h
and census-16l datasets differ in their features: each
consists of 16 features drawn from the 1990 census.

These datasets are fitted into the multiple instance
ranking framework as follows. States are boxes, di-
visions of towns are bags and towns are items. For
each state, towns whose place code begin with the
same number are assigned to the same division. As
no place code commences with the number 9, there
are up to 9 divisions per state. The task is to predict,
for each state, the division that contains the town with
the highest median housing unit price.

7. Results

For each dataset, results were obtained using both the
MIC and MIRank algorithms. For MIC, preferred bags
were treated as active bags and other bags were treated
as inactive bags. All results reported are for linear
functions.

The experimental design is as follows. Each dataset
was randomly split into training, validation and test-
ing subsets consisting of 60%, 20% and 20% of the
boxes, respectively. The training subset was used to



Multiple Instance Ranking

Table 2. Hypothesis testing

Dataset P-value

CYP3A4 substrate 5.59 · 10−3

Synthetic-1 1.62 · 10−6

Synthetic-2 1.31 · 10−2

Synthetic-3 5.84 · 10−3

Synthetic-4 1.46 · 10−4

Census-16h 4.51 · 10−2

Census-16l 3.92 · 10−4

train both MIC and MIRank models for 19 values of
tradeoff parameter ν spread logarithmically over the
range [10−3, 106]. The model corresponding to the
value of ν that resulted in the best prediction accu-
racy over the validation set was retained, and a pre-
diction using this model was obtained for the testing
subset. This process was repeated 32 times, and the
average performance across these 32 testing subsets is
reported in Table 1, along with the standard deviation
as a measure of spread.

All results in Table 1 are presented as a percentage
of boxes for which the preferred bag was accurately
predicted, allowing for 2 guesses per box, which is the
metric employed by Sheridan et al. (2007). The al-
gorithm tolerance τ defined in Algorithm 1 was set to
10−3.

For all datasets, the hypothesis that MIC and MIRank
results are statistically equal is dismissed using paired
t-testing at a 5% significance level. The p-values are
reported in Table 2.

8. Discussion

The results of Section 7 make a strong case supporting
the hypothesis that these problems, when framed in a
multiple instance ranking paradigm, are better solved
by an algorithm that is designed to solve problems of
that paradigm over one that is not. Forcing MIRank
problems into a MIC paradigm was not as successful.
In other words, the improvement is due to choosing a
model that better fits the problem.

The MIRank result for the CYP3A4 substrate dataset
reported in this paper compare favourably with ex-
isting approaches to hydrogen abstraction. It clearly
outperforms the results of Singh et al. (2003). Their
results are reproducible and their reported error holds
on new molecules. Comparison with Sheridan et al.
(2007) is more difficult. Reproduction of their results
is challenging since since their descriptors are not pub-

lic and the details of the learning and model selection
methods they used are not entirely clear. Our de-
scriptors attempt to reproduce those of Sheridan et al.
(2007), but could not be generated for all molecules.
Hence, we regard their results as optimistic.

A future controlled experiment is needed to fully com-
pare the approaches of Sheridan et al. (2007) and
those of this paper. This experiment would val-
idate which descriptor set and modeling paradigm
is most well suited for this chemistry applica-
tion. To facilitate future investigations into MIRank
and hydrogen abstraction, the datasets and Matlab
source codes used in this paper are available from
http://www.rpi.edu/∼bennek/MIRank/.

9. Conclusion

This paper introduced a framework that tackles a
novel machine learning question arising from an im-
portant chemistry problem. A first working algorithm
produces excellent results on it and other problems.
We believe that this first paper for MIRank will gen-
erate future research into new algorithms and appli-
cations. This section explores several possible exten-
sions.

In the chemistry domain, we often restrict ourselves to
sparse and linear models because model interpretabil-
ity is a desired property in the particular application of
drug discovery. However, this interpretability analysis
is a paper of its own, and does not appear here.

Hydrogen abstraction is an important application of
MIRank modeling of great practical value for drug dis-
covery. We are working to expand the efficacy and ap-
plicability of the MIRank hydrogen abstraction models
in several ways. First, we are increasing the number of
molecules in the database of CYP3A4 substrates that
can be used to develop and test new MIRank models.
Second, we hope to build databases and models for new
substrates, such as CYP2D6 and CYP2C9. Third, we
are developing novel descriptors that are believed to
be indicative of hydrogen abstraction.

We are working to improve the MIRank modeling
paradigm and investigating other potential multiple
instance ranking problems. Reports here are limited
to the linear MIRank models, but as discussed the ap-
proach can be readily applied with nonlinear models
using kernel functions. Research is needed to investi-
gate how modeling results are affected by changing the
loss functions in the empirical risk and/or regulariza-
tion terms of the optimization problem.

Finally, further improvements to the MIRank algo-
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rithm are possible. More scalable and efficient algo-
rithms for finding locally optimal solutions could be
developed by exploiting recent developments in large
scale support vector machine algorithms. In addition,
integer programming or cutting plane algorithms could
be used to find global minima of the optimization prob-
lem, but at much greater computational cost.
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