
An Object-Oriented Representation for Efficient Reinforcement Learning

Carlos Diuk CDIUK@CS.RUTGERS.EDU

Andre Cohen ACOHEN@CS.RUTGERS.EDU

Michael L. Littman MLITTMAN@CS.RUTGERS.EDU

RL3 Laboratory, Department of Computer Science, Rutgers University, Piscataway, NJ USA

Abstract

Rich representations in reinforcement learning
have been studied for the purpose of enabling
generalization and making learning feasible in
large state spaces. We introduce Object-Oriented
MDPs (OO-MDPs), a representation based on
objects and their interactions, which is a natural
way of modeling environments and offers impor-
tant generalization opportunities. We introduce
a learning algorithm for deterministic OO-MDPs
and prove a polynomial bound on its sample
complexity. We illustrate the performance gains
of our representation and algorithm in the well-
known Taxi domain, plus a real-life videogame.

1. Introduction

In the standard Markov Decision Process (MDP) formal-
ization of the reinforcement-learning (RL) problem (Sut-
ton & Barto, 1998), a decision maker interacts with an en-
vironment consisting of finite state and action spaces. Al-
gorithms for RL in MDP environments suffer from what is
known as the curse of dimensionality: an exponential ex-
plosion in the total number of states as a function of the
number of state variables. Learning in environments with
extremely large state spaces is challenging if not infeasible
without some form of generalization. Exploiting the un-
derlying structure of a problem can enable generalization
and has long been recognized as important in representing
sequential decision tasks (Boutilier et al., 1999).

In this paper, we propose an extension to the standard MDP
formalism, which we call Object-Oriented MDPs (OO-
MDPs), and present an efficient learning algorithm for de-
terministic OO-MDPs. We claim that this object-based ap-
proach is a natural way of viewing and describing many
real-life domains that enables multiple opportunities for

Appearing in Proceedings of the 25 th International Conference
on Machine Learning, Helsinki, Finland, 2008. Copyright 2008
by the author(s)/owner(s).

generalization. There are many ways of incorporating ob-
jects into models for learning and decision making—this
paper explores one particular approach as a first attempt to
understand the issues that arise.

Our representation has multiple connections with other for-
malisms proposed in the Relational Reinforcement Learn-
ing literature (van Otterlo, 2005), but emphasizes simplic-
ity and tractability over expressive power. Our representa-
tion starts from attributes that can be directly perceived by
the agent, rather than predicates or propositions introduced
by the designer (although we allow the encoding of prior
knowledge in propositional form). A similar formalism,
relational MDPs (RMDPs), was introduced by Guestrin
et al. (2003) in the context of planning, and is based on
the same insight. While our formalism has similarities to
RMDPs, we introduce a number of changes, mainly in the
way transition dynamics are described, to enable efficient
learning and generalization.

To present and test our approach, we first provide bench-
mark experiments in the well-known Taxi domain (Diet-
terich, 2000). We further demonstrate its applicability by
designing an agent that can solve an interesting problem in
the real-life videogame Pitfall1.

2. Notation

We use a standard Markov Decision Process (MDP) no-
tation throughout this paper (Puterman, 1994). A finite
MDP M is a five tuple 〈S,A, T,R, γ〉. We use T (s′|s, a)
to denote the transition probability of state s′ given state–
action pair (s, a) and R(s, a) to denote the expected reward
value. A deterministic MDP is one in which there is a sin-
gle next state s′ for every given state s and action a; that is,
∀s ∈ S, a ∈ A,∃s′ ∈ S : T (s′|s, a) = 1.

3. Object-oriented Representation

We will use the Taxi domain, defined by Dietterich (2000),
as an example to introduce our formalism. Taxi is a grid-

1 c©1982 Activision, Inc.

An Object-Oriented Representation for Efficient Reinforcement Learning

Figure 1. The taxi domain. (a) Original 5 × 5 Taxi problem. (b)
Extended 10× 10 version, with a different wall distribution and 8
possible passenger locations and destinations.

world domain (see Figure 1.a), where a taxi has the task
of picking up a passenger in one of a pre-designated set
of locations (identified in the figure by the letters Y, G, R,
B) and dropping it off at a goal destination, also one of the
pre-designed locations. The set of actions for the taxi are
North, South, East, West, PICKUP and DROPOFF. Walls
in the grid limit the taxi’s movements.

A common factored-state representation for the Taxi prob-
lem uses Dynamic Bayesian Networks (DBNs) to indicate
how state variables influence each other. For example, the
location of the taxi after a North action only depends on
its current location and is independent of the passenger or
destination variables.

We depart from this representation and introduce one based
on objects and their interactions. Many elements in our
representation are similar to those of relational MDPs
(Guestrin et al., 2003) with significant differences in the
way we represent transition dynamics. Similar to RMDPs,
we define a set of classes C = {C1, . . . , Cc}. Each class in-
cludes a set of attributes Att(C) = {C.a1, . . . , C.aa}, and
each attribute has a domain Dom(C.a). A particular envi-
ronment will consist of a set of objects O = {o1, . . . , oo},
where each object is an instance of one class: o ∈ Ci. The
state of an object o.state is a value assignment to all its at-
tributes. The state of the underlying MDP is the union of
the states of all its objects: s =

⋃o
i=1 oi.state.

An OO-MDP representation of Taxi has four object classes:
Taxi, Passenger, Destination and Wall. Taxi, Passenger and
Destination have attributes x and y, which define their lo-
cation in the grid. Passenger also has a Boolean attribute
in-taxi, which specifies whether the passenger is inside the
taxi. Walls have an attribute that indicates their position in
the grid. The Taxi domain, in its 5 × 5 version shown in
Figure 1.a, has one object of each class Taxi, Passenger,
and Destination, and multiple (26) objects of class Wall.
This list of objects points out a significant feature of the

OO-MDP representation. Whereas in the classical MDP
model, the effect of encountering walls is felt as a prop-
erty of specific locations in the grid, the OO-MDP view is
that wall interactions are the same regardless of their loca-
tion. As such, agents’ experience can transfer gracefully
throughout the state space.

When two objects interact in some way, they define a rela-
tion between them. A combination of the relation estab-
lished, plus the internal states of the two objects, deter-
mines an effect—a change in value of one or multiple at-
tributes in either or both interacting objects. This behavior
is defined at the class level, meaning that different objects
that are instances of the same class behave in the same way
when interacting with other objects. Formally, a relation
r : Ci × Cj → Boolean is a function, defined at the class
level, over the combined attributes of objects of classes Ci

and Cj . Its value gets defined when instantiated by two ob-
jects o1 ∈ Ci and o2 ∈ Cj . For our Taxi representation,
we will define 5 relations: touchN (o1, o2), touchS(o1, o2),
touchE(o1, o2), touchW (o1, o2) and on(o1, o2), which de-
fine whether an object o2 ∈ Cj is exactly one cell North,
South, East or West of an object o1 ∈ Ci, or if both objects
are overlapping (same x, y coordinates). Different domains
require different relations.

When the object taxii ∈ Taxi is on the northern edge of
the grid and tries to perform a North action, it hits some
object wallj ∈ Wall and the observed behavior is that it
doesn’t move. We say that a touchN (taxii, wallj) rela-
tion has been established and the effect of an action North
under that condition is no-change. On the other hand, if
¬touchN (taxii, wallj) is true and the taxi performs the ac-
tion North, the effect will be taxii.y ← taxii.y + 1. As
stated before, these behaviors are defined at the class level,
so we can refer in general to the relation touchN (Taxi, Wall)
as producing the same kind of effects on any instance of
taxii ∈ Taxi and wallj ∈ Wall.

We define some properties of these transition dynamics
more formally in the next section.

3.1. Transition Dynamics

Every state s induces a certain value assignment to all at-
tributes of all objects—and therefore all relations—in the
domain. Transitions are determined by interactions be-
tween objects. Every pair of objects o1 ∈ Ci and o2 ∈ Cj ,
their internal states o1.state and o2.state, an action a, and
the set of relations r(o1, o2) that are true—or false—at the
current state, determine an effect—a change of value in
some of the objects’ attributes.

Definition 1 An effect is a single operation over a single
attribute att in the OO-MDP. We will group effects into
types, based on the kind of operation they perform. Ex-

An Object-Oriented Representation for Efficient Reinforcement Learning

amples of types are arithmetic (increment att by 1, subtract
2 from att), and constant assignment (set att to 0).

Definition 2 A term t is any Boolean function. In our OO-
MDP representation, we will consider terms representing
either a relation between two objects, a certain possible
value of an attribute of any of the objects or, more gener-
ally, any Boolean function defined over the state space that
encodes prior knowledge. All transition dynamics in an
OO-MDP are determined by the different possible settings
of a special set of terms called T .

Definition 3 A condition is a set Tc of terms and negations
of terms from T that must be true in order to produce a
particular effect e under a given action a.

We can summarize an OO-MDP transition cycle as follows:

1: while agent is acting do
2: Agent observes current state s and returns action a.
3: From state s, the environment extracts all relations

that currently hold between objects and observes
the value of all attributes of all objects, assigning
a True/False value to all terms in T .

4: For each (if any) fulfilled condition in Tc, there’s an
effect that will occur, determining a set of effects to
be applied to s.

5: If no conditions were fulfilled, no change takes place
to s.

6: Otherwise, the environment uses the set of effects to
compute s′. New state s← s′.

7: The environment chooses a reward r from R(s, a).
8: Agent is told r.
9: end while

4. DOORMAX: Learning and Solving
Deterministic OO-MDPs

We introduce Deterministic Object-Oriented Rmax
(DOORMAX), an algorithm for learning and solving
deterministic OO-MDPs. DOORMAX is correct and,
as we will show, provably efficient under the following
assumptions.

Assumption 1 For each action and each attribute, only ef-
fects of one type can occur.

Assumption 2 For every action a, attribute att and effect
type t, there is a set CE of condition–effect pairs that deter-
mine changes to att given a. No effect can appear twice on
this list, and there are at most k different pairs—|CE| ≤ k.
Plus, no conditions Ti and Tj in the set CE contain each

other: ¬(Ti ⊂ Tj ∨ Tj ⊂ Ti). The number of terms or
negations of terms in any condition is bounded by a known
constant M .

Assumption 3 Effects are invertible, that is, given states s
and s′, for each attribute att and each effect type we can
determine a unique effect that would transform att from its
value in s to its value in s′.

4.1. Definitions and Data Structures

We introduce some definitions, notation, and data struc-
tures that will be used to describe DOORMAX:

• T is the union of all terms t that will be involved in
the conditions that determine the transition dynamics
of the environment described by the OO-MDP, plus
their negations ¬t, with |T | = 2n.

• For every state s ∈ S, the function cond(s) returns the
subset of terms in T that are true in s.

• A condition Tc ⊆ T is represented by a string cS of
length n, where ci

S = 1 if ti ∈ Tc, ci
S = 0 if ¬ti ∈ Tc

and ci
S = * if ti /∈ Tc ∧ ¬ti /∈ Tc.

• Given two conditions represented as strings c1 and c2,
we define the commutative operator ⊕ : c× c→ c as
follows:

c1 c2 c1 ⊕ c2

0 0 0
1 1 1
0 1 *

0|1 * *

• A condition c1 matches another condition c2, noted
c1 |= c2, if ∀1 ≤ i ≤ n : ci

1 = * ∨ ci
1 = ci

2.

• For any states s and s′ and attribute att, the function
effatt(s, s

′) returns one effect of each type that would
transform attribute att in s into its value in s′.

• A prediction p is a pair (p.model, p.effect), where
p.model is a condition that represents the set of terms
that need to be true for p.effect to occur.

• For each action a, each attribute att and each ef-
fect type type, a set of predictions pred(a, att, type)
is maintained. We refer to the set of models in a set of
predictions as pred(a, att, type).models.

• If an action a produces no effect from a given state
s (s′ = s), we call the induced condition cond(s) a
failure condition. We define Fa to be a set of failure
conditions for action a.

• Two effects are incompatible if, for any initial value
of an attribute, applying these two effects would yield
two different final values.

An Object-Oriented Representation for Efficient Reinforcement Learning

4.2. OO-MDP Representation of Taxi

To facilitate understanding of the notation and data struc-
tures, we present a full example of our representation in the
Taxi domain.

The set of terms T , which determines the transition dynam-
ics of the OO-MDP, includes the four touchN/S/E/W rela-
tions between the taxi and the walls; the relevant relations
between the taxi and the passenger and destination; the at-
tribute value passenger.in-taxi = T ; and all their nega-
tions:

{ touchN/S/E/W (taxi, wall), on(taxi, passenger),
¬touchN/S/E/W (taxi, wall), ¬on(taxi, passenger),
on(taxi, destination), ¬on(taxi, destination),
passenger.in-taxi = T , passenger.in-taxi = F }

Consider the state s where the taxi is in position (2, 4) (as
in Figure 1.a), the passenger is inside the taxi, and the des-
tination is G. For this state, the function cond(s) returns:

{ touchN (taxi, wall), ¬touchS(taxi, wall),
¬touchE(taxi, wall), touchW (taxi, wall),
¬on(taxi, passenger), ¬on(taxi, destination),
passenger.in-taxi = T }.

The corresponding 7-character string representation for this
condition is 1001001, following the prior order for the
terms.

Let’s now assume that the agent tries to perform the ac-
tion East, which takes it to state s′ where the taxi is in
location (3, 4). The corresponding cond(s′) is similar, ex-
cept that now the taxi is not touching a wall to its West
(¬touchW (taxi, wall)). The corresponding string represen-
tation of the new condition is: 1000001. The observed ef-
fect is that the taxi moved to location (3, 4). In our repre-
sentation, two effect types are allowed: arithmetic and con-
stant assignment. Therefore, the function efftaxi.x(s, s′)
will return two values: increment(1) and set-to(3).

Now, the agent takes another East action, and gets to state
s′′, where location is (4, 4), it’s touching a wall to the East
and standing on the destination. cond(s′′) can now be rep-
resented as 1010011. The two observed effects to taxi.x are
increment(1) and set-to(4). Note that the transition model
for an OO-MDP need not predict the changes to the condi-
tions, only to the attributes. The condition values are then
derived separately using the knowledge of the relevant re-
lations and their definitions.

Finally, we’ll consider separately the actions that produce
no effect. Let’s assume the agent also attempted an action
North from each of the previous states, which resulted in it
hitting a wall and staying in the same state. We treat these
cases differently: The corresponding conditions 1001001,
1000001 and 1010011 will be identified as failure condi-
tions for action North and incorporated into the set FNorth.

Whenever we observe a new condition ci such that any ex-
isting condition in FNorth matches it, we predict that per-
forming a North action will have no effect.

4.3. Learning Algorithm

The DOORMAX algorithm (Algorithm 1) follows the gen-
eral structure of most RL algorithms in the Rmax fam-
ily, which work as follows. Using examples of transi-
tions (s, a, s′), a learning algorithm constructs the tran-
sition model T . The learning algorithm must satisfy the
KWIK (knows what it knows) conditions (Li et al., 2008),
which say: (1) all predictions must be accurate (assuming a
valid hypothesis class), and (2) however, the learning algo-
rithm may also return ⊥, which indicates that it cannot yet
predict the output for this input. The sample complexity
or KWIK bound of a learning algorithm is the maximum
number of times it returns ⊥. In the Rmax setting, any
transition that cannot yet be predicted is assumed to lead to
a fictious smax state from which maximum reward can be
obtained.

Algorithm 1 DOORMAX: main() method
1: // Set up data structures:
2: for all actions a ∈ A do
3: Fa ← ∅
4: for all attributes att ∈ ⋃

c∈C Att(c) do
5: for all effect types type do
6: pred(a, att, type)← ∅
7: Add pred(a, att, type) to set of active predic-

tions P
8: end for
9: end for

10: end for
11: while ¬(Termination criterion) do
12: Observe current state s.
13: Choose action a according to exploration pol-

icy, based on prediction for T (s′|s, a) returned by
predictTransition(s, a).

14: Observe new state s′.
15: Update learned model using method

addExperience(s, a, s′, k).
16: end while

The two main routines of the algorithm are
predictTransition (Algorithm 2), which pre-
dicts the next state given a current state and action
based on the current model, and addExperience
(Algorithm 3), which learns a model of the OO-MDP. If
predictTransition is not able to predict a next state
with accuracy, it returns smax.

To help understand these routines, we present a couple of
intuitions, based on the Taxi examples presented in the pre-
vious section. Notice that if we applied the ⊕ operator to

An Object-Oriented Representation for Efficient Reinforcement Learning

cond(s) and cond(s′), the two conditions from which an
East action produced an increment(1) effect, we would ob-
tain: 1001001 ⊕ 1000001 = 100*001. The resulting con-
dition indicates that the term touchW (wall, taxi) is irrele-
vant with respect to action East and effect increment(1). If
we also compare the two pairs of effects obtained, we ob-
serve that we consistently observed increment(1), whereas
set-to(3) and set-to(4) are incompatible effects. These ob-
servations constitute the central ideas for the learning algo-
rithm.

Algorithm 2 predictTransition(s,a) method
0: Inputs: state s and action a.
0: Output: a predicted state s′ ∈ S ∪ {smax}.
1: if ∃c ∈ Fa s.t. c |= cond(s) then
2: // The current condition is a known failure condition.
3: Return s
4: else
5: for all attributes att ∈ ⋃

c∈C Att(c) do
6: E ← ∅
7: for all effect types type do
8: if ∃p ∈ pred(a, att, type) s.t. p.model |=

cond(s)S then
9: Add p.effect to E

10: end if
11: end for
12: if E = ∅ ∨ ∃ei, ej ∈ E s.t. ei and ej are incom-

patible then
13: Return smax

14: else
15: // Set E contains all the individual operations

that need to be applied to attributes in s in order
to convert it to s′.

16: s′ ← apply E to s
17: Return s′

18: end if
19: end for
20: end if

5. Analysis

Under the current assumptions, the effects of a given action
on a given attribute assuming effects of a given type can be
learned with a worst-case bound of O(nM), where n = |T |
is the number of terms and M is the maximum number of
terms involved in any of the conditions. This worst-case
bound can be guaranteed by a variant of SLF-Rmax, an al-
gorithm introduced by Strehl et al. (2007).

The uniqness assumption, Assumption 2, is not needed for
SLF-Rmax to achieve this worst-case bound. However,
DOORMAX, by taking advantage of this assumption, is
able to learn faster in many domains. Some empirical evi-

dence to support this claim appears in Section 6.

If we assume M is a constant, SLF-Rmax can be used to
provide guaranteed efficient results. However, for many
domains DOORMAX will result much more efficient in
practice. We conjecture that the two approaches can be run
in parallel, to achieve the best of both.

Intuitively, the good empirical results of DOORMAX lie in
the way condition-effects are learned each time they are ob-
served. The worst-case occurs when the agent observes an
exponential amount of failures before observing instances
of the set of effects it needs to learn.

We now show that the problem of learning the transition
dynamics of an OO-MDP has polynomial sample complex-
ity in the KWIK setting, when by sample we only refer to
the cases where an effect is observed (as opposed to failure
samples where s′ = s).

We split the proof in two parts. First, we show that learning
the right (condition, effect) pairs for a single action and at-
tribute is KWIK-learnable, and then we show that learning
the right effect type for each action–attribute, given all the
possible effect types, is also KWIK learnable.

Theorem 1 The transition model for a given action a, at-
tribute att and effect type type in a deterministic OO-MDP
is KWIK-learnable with a bound of O(nk+k+1), where n
is the number of terms in a condition and k is the maximum
number of effects per action–attribute.

Proof:

Given state s and action a, the predictor for effect type type
will return ⊥ if cond(s) is not a known failure condition
and there is no condition in pred(a, att, type) that matches
cond(s). In that case, it gets to observe s′ and updates its
model with cond(s) and the observed effect e. We show
that the number of times the model can be updated until it
always has a correct prediction is O(nk + k + 1):

• if the effect e has never been observed before for
this particular action, attribute and effect type, it gets
added to pred(a, att, type). This outcome happens at
most k times, which is the maximum number of dif-
ferent effects allowed per action-attribute-type combi-
nation.

• if the effect e has never been observed, but
|pred(a, att, type)| = k, the algorithm concludes that
the current effect type is not the correct one for this
action–attribute, and it removes all predictions of this
type from its set P . This event can only happen once.

• if the effect e is such that there already exists a predic-
tion for it, ⊥ is only returned if the existing condition

An Object-Oriented Representation for Efficient Reinforcement Learning

in the model does not match cond(s). This case can
only happen if a term in the model is a 0 or 1 and the
observation is the opposite. Once it happens, that term
becomes a *, so there will never be another mismatch
for that term, as * matches either 0 or 1. In the worst
case, with every ⊥ returned, one term at a time gets
converted into *. These updates can only happen n
times for each effect in pred(a, att, type), for a total of
nk times.

Therefore, there can be at most nk + k + 1 updates to the
model for a particular action a, attribute att and effect type
type before pred(a, att, type) either has a correct prediction
or gets eliminated. �

Corollary 1 The transition model for a given action and
attribute in a deterministic OO-MDPs is KWIK-learnable
with a bound of O(h(nk + k + 1) + (h − 1)), where n is
the number of terms in a condition, k is the max number of
effects per action–attribute, and h is the number of effect
types.

Proof: Whenever DOORMAX needs to predict s′ given
state s and action a, it will consult its current predictions
for each attribute and effect type. It will return ⊥ if:

• for any of the h effect types typei, pred(a, att, typei)
returns ⊥. As shown in Theorem 1, pred(a, att, typei)
can only return ⊥ up to nk + k + 1 times. Therefore,
this case can only happen h(nk + k + 1) times.

• for some attribute att, there are two effect types
type1 and type2 such that pred(a, att, type1) �=
pred(a, att, type2). When this happens, we get to ob-
serve the actual effect e, which will necessarily mis-
match one of the predictions. The model will there-
fore be updated by removing either pred(a, att, type1)
or pred(a, att, type2) from its set of predictions. This
case can only occur h− 1 times for a given action and
attribute.

We have shown that, in total, DOORMAX will only predict
⊥ O(h(nk + k + 1) + (h − 1)) times before having an
accurate model of the transition dynamics for an action and
attribute in the OO-MDP. �

6. Experiments

First, we use the Taxi domain to demonstrate how DOOR-
MAX makes use of the OO-MDP representation to outper-
form Factored-Rmax, an algorithm based on a factored-
state MDP representation. Second, we show how DOOR-
MAX and Factored-Rmax scale when the size of the state
space increases, by comparing them on the 10×10 version
of Taxi. Finally, we demonstrate how DOORMAX can be

Algorithm 3 addExperience(s,a,s’,k) method

0: Inputs: an observation < s, a, s′ >; k, the maximum
number of different effects possible for any action, at-
tribute and effect type.

1: if s = s′ then
2: // Found a failure condition for action a, update Fa

3: Remove all c ∈ Fa s.t. cond(s) |= c.
4: Fa ← Fa ∪ {cond(s)}
5: else
6: for all attributes att ∈ ⋃

c∈C Att(c) do
7: for all e ∈ effatt(s, s

′) do
8: Find a prediction p ∈ pred(a, att, e.type) such

that p.effect = e
9: if ∃p then

10: // We already have a (condition, effect) pre-
diction for current a, att, and type. Update
condition and verify that there are no over-
laps.

11: p.model← p.model⊕ cond(s)S .
12: if ∃c ∈ (pred(a, att, e.type) \ p).models s.t.

p.model |= c then
13: // Conditions overlap, violating an as-

sumption, meaning it is not the right type
of effect for this action and attribute.

14: Remove pred(a, att, e.type) from P
15: end if
16: else
17: // We observed an effect for which we had

no prediction. If its condition does not over-
lap an existing condition, then add this new
prediction.

18: if ∃c ∈ pred(a, att, e.type).models s.t.
cond(s) |= c ∨ c |= cond(s) then

19: Remove pred(a, att, e.type) from P
20: else
21: Add (cond(s), e) to pred(a, att, e.type).
22: // Verify that there aren’t more than k pre-

dictions for this action, attribute and type.
23: if |pred(a, att, e.type)| > k then
24: Remove pred(a, att, e.type) from P
25: end if
26: end if
27: end if
28: end for
29: end for
30: end if

An Object-Oriented Representation for Efficient Reinforcement Learning

applied to succesfuly model and solve a real-life problem,
the Pitfall videogame.

6.1. Taxi

The first experiments we present are based on the Taxi do-
main previously introduced. We run experiments on two
versions: the original 5 × 5-grid version presented by Di-
etterich (2000), which consists of 500 states, and an ex-
tended 10×10-grid version with 8 passenger locations and
destinations, with 7200 states (see Figure 1). The purpose
of the extended version is to demonstrate how DOORMAX
scales by properly generalizing its knowledge about con-
ditions and effects when more objects of the same known
classes are introduced.

We compare DOORMAX against Factored-Rmax, an al-
gorithm from the Rmax family that uses a factored-state
MDP and models transitions using a DBN provided as in-
put. Both algorithms are model based and use Rmax-style
exploration, so we hope to be able to truly compare the un-
derlying representations.

The representation used for DOORMAX was described in
the previous sections. In the case of Factored-Rmax, we
provide a DBN with some derived features that make learn-
ing faster. The state variables used are the Taxi x and y
locations, plus two Boolean features: in-taxi, representing
whether the passenger is in the taxi, and at-destination,
representing whether the taxi is standing at the passenger’s
destination.

The experiments for both algorithms and both versions of
the Taxi problem were repeated 100 times, and the re-
sults averaged. For each experiment, we run a series of
episodes, each starting from a random start state. We eval-
uate the agent’s learned policy after each episode on a set
of six “probe” combinations of 〈taxi (x,y) location, pas-
senger location, passenger destination〉. The probe states
used were: {(2, 2), Y,R}, {(2, 2), Y,G}, {(2, 2), Y,B},
{(2, 2), R,B}, {(0, 4), Y,R}, {(0, 3), B,G}. We report
the number of steps taken before learning an optimal policy
for these six start states.

The results are shown in the following table, with the last
column showing the ratio between the results for the 10×10
version vs the 5× 5 one:

Taxi 5× 5 Taxi 10× 10 Ratio
Number of states 500 7200 14.40
Factored Rmax

steps 1676 19866 11.85
Time per step 43.59ms 306.71ms 7.03

OO-Rmax
steps 529 821 1.55

Time per step 13.88ms 293.72ms 21.16

We can see how DOORMAX not only learns with signifi-
cantly less sample complexity, but also how well it scales to
the larger problem. After increasing the number of states by
more than 14 times, DOORMAX only requires 1.55 times
the experience.

The main difference between DOORMAX and Factored-
Rmax is their internal representation, and the kind of gen-
eralization it enables. After just a few examples in which
¬touchN (taxi, wall) is true, DOORMAX learns that the
action North has the effect of incrementing taxi.y by 1,
whereas under touchN (taxi, wall) it fails. This knowledge,
as well as its equivalent for touchS/E/W , is generalized
to all 25 (or 100) different locations. Factored-Rmax only
knows that variable taxi.y′ in state s′ depends on its value
in state s, but still needs to learn the transition dynamics for
each possible value of taxi.y (5 or 10 different values). In
the case of actions East and West, it’s even worse, as walls
make taxi.x′ depend on both taxi.x and taxi.y, which are
25 (or 100) different values.

As DOORMAX is based on interactions between objects, it
learns that the relation between taxi and wall is indepen-
dent of the wall location. Each new wall is therefore the
same as any known wall, rather than a new exception in the
movement rules, the kind Factored-Rmax needs to learn.

6.2. Pitfall

Pitfall is a video game released in 1982 by Activision for
the Atari game console. The goal is to have the main char-
acter (Man) traverse a series of screens while collecting as
many points as possible while avoiding obstacles (such as
holes, pits, logs, crocodiles and walls) and under the time
constraint of 20 minutes. All transitions in Pitfall are deter-
ministic. Our goal in this experiment was to have the Man
cross the first screen from the left to the right with as few
actions as possible. Figure 2 ilustrates this first screen.

Our experiments were run using a modified Atari emula-
tor that ran the actual game and detected objects from the
displayed image. We used a simple heuristic that identified
objects by color clusters and sent joystick commands to the
emulator to influence the play. For each frame of the game,
a list of object locations was sent to an external learning
module that analyzed the state of the game and returned an
action to be executed before the emulator continued on to
the next frame. If we consider that we start from screen
pixels, the flat state representation for Pitfall is enormous:
16640x420. By breaking it down into basic objects, through
an object recognition mechanism, the state space is in the
order of the number of objects to the number of possible
locations of each object: 6640x420. OO-MDPs allow for
a very succint representation of the problem, that can be
learned with only a few experience samples.

An Object-Oriented Representation for Efficient Reinforcement Learning

Figure 2. Initial screen of Pitfall.

The first screen contains six object types: Man, Hole, Lad-
der, Log, Wall and Tree. Objects have the attributes x,
y, width and height, which define their location on the
screen and dimension. The Man also has a Boolean at-
tribute of direction that specifies which way he is fac-
ing. We extended the touchX relation from Taxi to
describe diagonal relations between objects, including:
touchNE(oi, oj), touchNW (oi, oj), touchSW (oi, oj) and
touchSE(oi, oj). These relations were needed to properly
capture the effects of moving on and off of ladders.

In our implementation of DOORMAX, we defined seven
actions: WalkRight, WalkLeft, JumpLeft, JumpRight, Up,
Down and JumpUp. For each of these actions, however, the
emulator has to actually execute a set sequence of smaller
frame-specific actions. For example, WalkLeft requires four
frames: one to tell Pitfall to move the Man to the left, and
three frames where no action is taken to allow for the ani-
mation of the Man to complete. Effects are represented as
arithmetic increments or decrements to the attributes x, y,
width, height, plus a constant assignment of either R or L
to the attribute direction.

The starting state of Pitfall is fixed, and given that all
transitions are deterministic, only one run of DOORMAX
was necessary to learn the dynamics of the environment.
DOORMAX learns an optimal policy after 494 actions, or
4810 game frames, exploring the area beneath the ground
as well as the objects en route to the goal. Once the transi-
tion dynamics are learned, restarting the game results in the
Man exiting the first screen through the right, after jumping
the hole and the log, in 94 actions (905 real game frames),
which is what the optimal policy requires.

A few examples of the (condition, effect) pairs learned by
DOORMAX are shown below:

Action Condition Effects
WalkRight direction = L {direction = R,

Δx = +8}
WalkRight touchE(Man, Wall) no-effect
JumpRight direction = R Δx = +214

Up on(Man, Ladder) Δy = +8

7. Conclusions and Future Work

We introduced OO-MDPs, an object-oriented representa-
tion for reinforcement-learning problems that provides a
natural way of modeling a broad set of domains, while en-
abling generalization. We presented DOORMAX, a learn-
ing algorithm for deterministic OO-MDPs that not only
outperforms state-of-the-art algorithms for factored-state
representations, but also scales very nicely with respect to
the size of the state space, as long as transition dynamics
between objects do not change. We presented bounds for
learning transition dynamics of determinstic OO-MDPs in
the KWIK framework.

One limitation of our work is that we do not yet have a
provably efficient algorithm for stochastic domains, which
is part of our future work. While OO-MDPs can model
stochastic transitions, a more complex learning algorithm
would be needed to learn transitions effectively in the face
of noise.

The second component of our future research is the exten-
sion of the object-oriented model to be able to handle in-
heritance. We hope to be able to exploit knowledge about
objects being part of a common super-class to learn their
behaviors faster. Ideally, algorithms could also learn the
object definitions and classes automatically, as well.

References
Boutilier, C., Dean, T., & Hanks, S. (1999). Decision-theoretic

planning: Structural assumptions and computational leverage.
Journal of Artificial Intelligence Research, 11, 1–94.

Dietterich, T. G. (2000). Hierarchical reinforcement learning with
the MAXQ value function decomposition. Journal of Artificial
Intelligence Research, 13, 227–303.

Guestrin, C., Koller, D., Gearhart, C., & Kanodia, N. (2003). Gen-
eralizing plans to new environments in relational mdps. IJCAI
(pp. 1003–1010).

Li, L., Littman, M. L., & Walsh, T. J. (2008). Knows what it
knows: A framework for self-aware learning. Twenty-Fifth In-
ternational Conference on Machine Learning.

Puterman, M. L. (1994). Markov decision processes—discrete
stochastic dynamic programming. New York, NY: John Wiley
& Sons, Inc.

Strehl, A. L., Diuk, C., & Littman, M. L. (2007). Efficient struc-
ture learning in factored-state mdps. AAAI (pp. 645–650).
AAAI Press.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An
introduction. The MIT Press.

van Otterlo, M. (2005). A survey of reinforcement learning in
relational domains (Technical Report TR-CTIT-05-31). CTIT
Technical Report Series, ISSN 1381-3625.

