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Abstract

One of the most common problems in ma-
chine learning and statistics consists of esti-
mating the mean response Xβ from a vec-
tor of observations y assuming y = Xβ + ε
where X is known, β is a vector of param-
eters of interest and ε a vector of stochastic
errors. We are particularly interested here
in the case where the dimension K of β is
much higher than the dimension of y. We
propose some flexible Bayesian models which
can yield sparse estimates of β. We show
that as K → ∞ these models are closely re-
lated to a class of Lévy processes. Simula-
tions demonstrate that our models outper-
form significantly a range of popular alterna-
tives.

1. Introduction

Consider the following linear regression model

y = Xβ + ε (1)

where y ∈ RL is the observation, β = (β1, . . . , βK) ∈
RK is the vector of unknown parameters, X is an
known L×K matrix. We will assume that ε follows a
zero-mean normal distribution ε ∼ N (

0, σ2IL

)
where

IL is the identity matrix of dimension L.

We do not impose here any restriction on L and K
but we are particularly interested in the case where
K >> L. This scenario is very common in many ap-
plication domains. In such cases, we are interested in
obtaining a sparse estimate of β; that is an estimate
β̂ = (β̂1, . . . , β̂K) such that only a subset of the com-
ponents β̂k differ from zero. This might be for sake of
variable selection (Tibshirani, 1996; Figueiredo, 2003;
Griffin & Brown, 2007) or to decompose a signal over
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an overcomplete basis (Lewicki & Sejnowski, 2000;
Chen et al., 2001).

Numerous models and algorithms have been proposed
in the machine learning and statistics literature to
address this problem including Bayesian stochastic
search methods based on the ‘spike and slab’ prior
(West, 2003), Lasso (Tibshirani, 1996), projection pur-
suit or the Relevance Vector Machine (RVM) (Tip-
ping, 2001). We follow here a Bayesian approach
where we set a prior distribution on β and we will
primarily focus on the case where β̂ is the result-
ing Maximum a Posteriori (MAP) estimate or equiv-
alently the Penalized Maximum Likelihood (PML) es-
timate. Such MAP/PML approaches have been dis-
cussed many times in the literature and include the
Lasso (the corresponding prior being the Laplace dis-
tribution) (Tibshirani, 1996; Lewicki & Sejnowski,
2000; Girolami, 2001), the normal-Jeffreys (NJ) prior
(Figueiredo, 2003) or the normal-exponential gamma
prior (Griffin & Brown, 2007). Asymptotic theoreti-
cal properties of such PML estimates are discussed in
(Fan & Li, 2001).

We propose here a class of prior distributions based
on scale mixture of Gaussians for β. For a finite K,
our prior models correspond to normal-gamma (NG)
and normal-inverse Gaussian (NIG) models. This class
of models includes as limiting cases both the popular
Laplace and normal-Jeffreys priors but is more flex-
ible. As K → ∞, we show that the proposed pri-
ors are closely related to the variance gamma and
normal-inverse Gaussian processes which are Lévy pro-
cesses (Applebaum, 2004). In this respect, our mod-
els are somehow complementary to two recently pro-
posed Bayesian nonparametric models: the Indian buf-
fet process (Ghahramani et al., 2006) and the in-
finite gamma-Poisson process (Titsias, 2007). Un-
der given conditions, the normal-gamma prior yields
sparse MAP estimates β̂. The log-posterior distribu-
tions associated to these prior distributions are not
convex but we propose an Expectation-Maximization
(EM) algorithm to find modes of the posteriors and
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a Markov Chain Monte Carlo (MCMC) algorithm to
sample from them. We demonstrate through simula-
tions that these Bayesian models outperform signifi-
cantly a range of established procedures on a variety
of applications.

The rest of the paper is organized as follows. In Sec-
tion 2, we propose the NG and NIG models for β. We
establish some properties of these models for K finite
and in the asymptotic case where K → ∞. We also
relate our model to the Indian buffet process (Ghahra-
mani et al., 2006) and the infinite gamma-Poisson pro-
cess (Titsias, 2007). In Section 3, we establish con-
ditions under which the MAP/PML estimate β̂ can
enjoy sparsity properties. Section 4 presents an EM
algorithm to find modes of the posterior distributions
and a Gibbs sampling algorithm to sample from them.
We demonstrate the performance of our models and
algorithms in Section 5. Finally we discuss some ex-
tensions in Section 6.

2. Sparse Bayesian Nonparametric
Models

We will consider models where the components β are
independent and identically distributed

p(β) =
K∏

k=1

p(βk)

and p (βk) is a scale mixture of Gaussians; that is

p (βk) =
∫
N (βk; 0, σ2

k)p
(
σ2

k

)
dσ2

k (2)

where N (x; µ, σ2) denotes the Gaussian distribution
of argument x, mean µ and variance σ2. We propose
two conjugate distributions for σ2

k; namely the gamma
and the inverse Gaussian distributions. The resulting
marginal distribution for βk belongs in both cases to
the class of generalized hyperbolic distributions.

In the models presented here, the unknown scale pa-
rameters are random and integrated out so that the
marginal priors on the regression coefficients are not
Gaussian. This differs from the RVM (Tipping, 2001)
where these parameters are unknown and estimated
through maximum likelihood.

2.1. Normal-Gamma Model

2.1.1. Definition

Consider the following gamma prior distribution

σ2
k ∼ G(

α

K
,
γ2

2
)

whose probability density function (pdf) G(σ2
k; α

K , γ2

2 )
is given by

(γ2

2 )
α
K

Γ( α
K )

(σ2
k)

α
K−1 exp(−γ2

2
σ2

k).

Following Eq. (2), the marginal pdf of βk is given for
βk 6= 0 by

p(βk) =
γα/K+1/2

√
π2α/K−1/2Γ( α

K )
|βk| α

K− 1
2K α

K− 1
2

(γ|βk|)
(3)

where Kν(·) is the modified Bessel function of the sec-
ond kind. We have

lim
βk→0

p(βk) =

{
γ

2
√

π

Γ( α
K− 1

2 )

Γ( α
K ) if α

K > 1
2

∞ otherwise

and the tails of this distribution decrease in
|βk|

α
K−1 exp(−γ |βk|), see Figure 1(a). The parame-

ters α and γ resp. control the shape and scale of the
distribution. When α → 0, there is a high discrepancy
between the values of σ2

k, while when α →∞, most of
the values are equal.
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Figure 1. Probability density functions of the NG and NIG
for different values of the parameters.

This class of priors includes many standard priors. In-
deed, Eq. (3) reduces to the Laplace prior when α

K = 1
and we obtain the NJ prior when α

K → 0 and γ → 0.

In Figure 2 some realizations of the process are given
for different values α = 1, 5, 100 and γ2/2 = α.

2.1.2. Properties

It follows from Eq. (3) that

E[|βk|] =
√

4
πγ2

Γ( α
K + 1

2 )
Γ( α

K )
, E[β2

k] =
2α

γ2K

and we obtain

lim
K→∞

E[
K∑

k=1

|βk|] =
2α

γ
, E[

K∑

k=1

β2
k] =

2α

γ2
.

Hence the sum of the terms remains bounded whatever
being K.
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Figure 2. Realizations (top)
{
σ2

k

}
k=1,...,K

and (bottom)

{βk}k=1,...,K from the NG model for α = 1, 5, 100.

Using properties of the gamma distribution, it is possi-
ble to relate β to a Lévy process known as the variance
gamma process as K → ∞. First consider a finite K.
Let σ2

(1) ≥ σ2
(2) ≥ . . . ≥ σ2

(K) be the order statistics
of the sequence σ2

1 , σ2
2 , . . . , σ2

K and let π1, . . . , πK be
random variables verifying the following (finite) stick-
breaking construction

πk = ζk

k−1∏

j=1

(1− ζj) with ζj ∼ B(1 +
α

K
, α− kα

K
) (4)

where B is the Beta distribution. Finally if g ∼
G(α, γ2

2 ) then we can check that the order statistics(
σ2

(k)

)
follow the same distribution as the order statis-

tics of (gπk). The characteristic function of βk is given
by

Φβk
(u) =

1(
1− iu

γ

) α
K

1(
1 + iu

γ

) α
K

and therefore

βk
d= w1−w2 where w1 ∼ G(

α

K
,γ) and w2 ∼ G(

α

K
,γ)

It follows that βk can be written as the difference of
two variables following a gamma distribution.

As K → ∞, the order statistics
(
σ2

(k)

)
are the conic

part of a gamma process with shape parameter α and
scale parameter γ2/2; see (Tsilevich et al., 2000) for

details. In particular σ2 =
(

σ2
(1)∑

k σ2
(k)

,
σ2
(2)∑

k σ2
(k)

, . . .

)
and

∑
k σ2

(k) are independent and respectively distributed

according to PD(α) and G(α, γ2/2) where PD(α) is
the Poisson-Dirichlet distribution of scale parameter
α. It is well-known that this distribution can be re-
covered by the following (infinite) stick-breaking con-
struction (Tsilevich et al., 2000) as if we set

πk = ζk

k−1∏

j=1

(1− ζj) with ζj ∼ B(1, α) (5)

for any k then the order statistics
(
π(k)

)
are dis-

tributed from the Poisson-Dirichlet distribution.

The coefficients (βk) are thus nothing but the weights
(jumps) of the so-called variance gamma process which
is a Brownian motion evaluated at times given by a
gamma process (Applebaum, 2004; Madan & Seneta,
1990).

2.2. Normal-Inverse Gaussian Model

2.2.1. Definition

Consider the following inverse Gaussian prior distribu-
tion

σ2
k ∼ IG(

α

K
, γ) (6)

whose pdf IG(σ2
k; α

K , γ) is given by (Barndorff-Nielsen,
1997)

1√
2π

α

K
exp(γ

α

K
)(σ2

k)−3/2 exp(−1
2
(

α2

K2σ2
k

+ γ2σ2
k))

(7)
Following Eq. (2), the marginal pdf of βk is given

αγ

πK
exp(

αγ

K
)
(

α2

K2
+ β2

k

)− 1
2

K1

(
γ

√
α2

K2
+ β2

k

)
(8)

and the tails of this distribution decrease in
|βk|−3/2 exp(−γ |βk|). It is displayed in Figure 1(b).
The parameters α and γ resp. control the shape and
scale of the distribution. When α → 0, there is a
high discrepancy between the values of σ2

k, while when
α → ∞, most of the values are equal. Some realiza-
tions of the model, for different values of α are repre-
sented in Figure 3.

2.2.2. Properties

The moments are given

E[|βk|] =
2α

Kπ
exp(

γα

K
)K0(

αγ

K
), E[β2

k] =
α

Kγ

Therefore, as K →∞, the mean of sum of the absolute
values is infinite while the sum of the square is α

γ .

We can also establish in this case that the coefficients
(βk) tend to weights (jumps) of a normal-inverse Gaus-
sian process (Barndorff-Nielsen, 1997).
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Figure 3. Realizations (top) (σ2
k)k=1,...,K and (bottom)

(βk)k=1,...,K from the NIG model for K = 100, N = 20,
α = 1, 10, 100 and γ = α.

2.3. Extension

Consider now the case where we have N vectors of
observations {yn}N

n=1 where yn ∈ RL. We would like to
model the fact that for a given k the random variables
{βn

k }N
n=1 are statistically dependent and exchangeable.

We consider the following hierarchical model

σ2
k ∼ G(

α

K
,
γ2

2
) or σ2

k ∼ IG(
α

K
, γ)

for k = 1, . . . , K and

βn
k ∼ N (0, σ2

k)

for n = 1, . . . , N. Some realizations of the process for
different values α = 1, 5, 100 are represented in Fig-
ure 4.

In this respect, this work is complementary to two re-
cently proposed Bayesian nonparametric models: the
Indian buffet process (Ghahramani et al., 2006) and
the infinite gamma-Poisson process (Titsias, 2007). In
these two contributions, prior distributions over infi-
nite matrices with integer-valued entries are defined.
These models are constructed as the limits of finite-
dimensional models based respectively on the beta-
binomial and gamma-Poisson models. They enjoy the
following property: while the number of non-zero en-
tries of an (infinite) row is potentially infinite, the ex-
pected number of these entries is finite. These models
are also closely related to the beta and gamma pro-
cesses which are Lévy processes (Applebaum, 2004;
Teh et al., 2007; Thibaux & Jordan, 2007). Our mod-
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Figure 4. Realizations (top) (σ2
k)k=1,...,K and (bottom)

(βn
k )n=1,...,N,k=1,...,K from the normal-gamma model for

K = 100, N = 20, α = 1, 10, 100 and γ2/2 = α. The
lighter the colour, the larger |βn

k | .

els could be interpreted as prior distributions over in-
finite matrices with real-valued entries. In our case,
the number of non-zero entries of an (infinite) row is
always infinite but we can have

lim
K→∞

E

[
K∑

k=1

|βn
k |ρ

]
< ∞ (9)

for ρ = 1 or ρ = 2. Morever for some values of α
K and

γ we can also ensure that for any x > 0

lim
K→∞

Pr (∃k : |βn
k | > x) > 0; (10)

that is there is still a non-vanishing probability of hav-
ing coefficients with large values as K →∞ despite Eq.
(9).

The joint distribution is given by p(β1:N
1:K ) =∏K

k=1 p(β1:N
k ) where for the NG model

p(β1:N
k ) ∝ u

α
K−N

2
k K α

K−N
2

(γuk)

and for the NIG model

p(β1:N
k ) ∝ (qk)−(N+1)/2KN+1

2
(γqk)

where

uk =

√∑N

n=1
(βn

k )2, qk =

√
α2

K2
+ u2

k (11)

3. Sparsity Properties

Further on we will also use the following notation for
any random variable u

pen(u) ≡ log(p(u))
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Table 1. Penalizations and their derivatives for different
prior distributions

pen(β1:N
k ) pen′(β1:N

k )
Lasso γ|βk| γ
(N = 1)
NJ N log(uk) N/uk

NG
(N

2 − α
K ) log uk

− logK α
K−N

2
(γuk)

γK α
K
−N

2 −1(γuk)

K α
K
−N

2
(γuk)

NIG
N+1

2 log (qk)
− logKN+1

2
(γqk)

(N+1)uk

q2
k

+γuk

qk

KN−1
2

(γqk)

KN+1
2

(γqk)

where ‘≡’ denotes equal up to an additive constant
independent of u. When computing the MAP/PML
estimate for N data, we select

β̂1:N = arg min
β1:N

N∑
n=1

‖yn −Xβn‖22
2σ2

−
K∑

k=1

pen(β1:N
k ).

(12)
We give in Table 1 the penalizations pen(β1:N

k ) and
their derivatives for different prior distributions as a
function of uk and qk defined in Eq. (11).

When α/K = 1, the NG prior is equal to the Laplace
prior so its penalization reduces to the `1 penaliza-
tion used in Lasso and basis pursuit (Tibshirani, 1996;
Chen et al., 2001). When α/K → 0 and c → 0 the
prior is the NJ prior and the penalization reduces to
log(|βk|) which has been used in (Figueiredo, 2003).
We display in Figure 5 the contours of constant value
for various prior distributions when N = 1 and K = 2.
For α/K < 1/2, the MAP estimate (12) does not exist
as the pdf (3) is unbounded. For other values of the
parameters, a mode can dominate at zero whereas we
are interested in the data driven turning point/local
minimum (Griffin & Brown, 2007).

Consider now the case where the matrix X is orthog-
onal, σ = 1 and N = 1. The turning point and/or
MAP/PML estimate is obtained by minimizing Eq.
(12) which is equivalent to minimize componentwise

1
2
(zk − βk)2 + pen(βk) (13)

where z = XT y. The first derivative of (13) is
sign(βk) (|βk|+ pen′(|βk|))− zk. As stated in (Fan &
Li, 2001, p. 1350), a sufficient condition for the esti-
mate to be a thresholding rule is that the minimum of
the function |βk|+ pen′(|βk|) is strictly positive. Plots
of the function |βk| + pen′(|βk|) are given in Figure 6
and the resulting thresholds corresponding to the ar-
gument minimizing (13) are presented in Figure 7. It
follows that the normal-gamma prior is a thresholding
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Figure 5. Contour of constant value of pen(β1) + pen(β2)
for different prior distributions.

rule for α/K ≤ 1 and yields sparse estimates. The
normal-inverse Gaussian is not a thresholding rule as
the derivative of the penalization is 0 when βk = 0
whatever being the values of the parameters. However,
from Figure 7(d), it is clear that it can yield “almost
sparse” estimates; that is most components are such
that
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Figure 6. Plots of |βk|+ pen′(|βk|).

4. Algorithms

4.1. EM

The log-posterior in Eq. (12) is not concave but we
can use the EM algorithm to find modes of it. The EM
algorithm relies on the introduction of the missing data
σ1:K = (σ1, ..., σK). Conditional upon these missing
data, the regression model is linear Gaussian and all
the EM quantities can be easily computed in closed
form; see for example (Figueiredo, 2003; Griffin &
Brown, 2007). We have at iteration i + 1 of the EM
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Figure 7. Thresholds for the different prior distributions.

β̂1:N
(i+1) = arg max

β1:N
Q(β1:N ; β̂1:N

(i) )

where Q(β1:N ; β̂1:N
(i) ) is given by

∫
log(p(β1:N |y1:N , σ1:K)).p(σ1:K |β̂1:N

(i) , y1:N )dσ1:K .

After a few calculations, we obtain

β̂n
(i+1) =

(
σ2V(i) + XT X

)−1
XT yn

with V(i) = diag(m1,(i), . . . , mK,(i)) and
mk,(i) =

(
ûk,(i)

)−1
pen′(ûk,(i)) where ûk,(i) =√∑N

n=1

(
β̂n

k,(i)

)2

, pen′(ûk,(i)) = ∂pen(uk)
∂uk

∣∣∣
ûk,(i)

(see

Table 1).

4.2. MCMC

We can also easily sample from the posterior distribu-
tion p(β1:N |y1:N ) by sampling from p(β1:N , σ2

1:K |y1:N )
using the Gibbs sampler. Indeed the full conditional
distributions p(β1:N |σ1:K , y1:N ) and p(σ2

1:K |β1:N , y1:N )
are available in closed-form. The distribution
p(β1:N |σ1:K , y1:N ) is a multivariate normal whereas we
have p(σ2

1:K |β1:N , y1:N ) =
∏K

k=1 p(σ2
k|β1:N

k ). For the
NG prior, we obtain

p(σ2
k|β1:N

k ) =
(σ2

k)
α
K−N

2 −1 exp
(
− 1

2
u2

k

σ2
k
− γσ2

k

)

2
(

uk

γ

) α
K−N

2 K α
K−N

2
(γuk)

which is a generalized inverse Gaussian distribution
from which we can sample exactly. For the NIG distri-
bution, we also obtain a generalized inverse Gaussian
distribution.

5. Applications

5.1. Simulated Data

In the following, we provide numerical comparisons
between the Laplace (that is Lasso), the RVM, NJ,
NG and NIG models. We simulate 100 datasets from
(1) with L = 50 and σ = 1. The correlation be-
tween Xk,i and Xk,j is ρ|i−j| with ρ = 0.5. We set
β = (3 1.5 0 0 2 0 0 . . .)T ∈ RK where the remaining
components of the vector are set to zero. We consider
the cases where K = 20, 60, 100, 200. Parameters of
the Lasso, NG and NIG are estimated by 5-fold cross-
validation, as described in (Tibshirani, 1996). The
Lasso estimate is obtained with the Matlab implemen-
tation of the interior point method downloadable at
http://www.stanford.edu/˜boyd/l1 ls/. For the other
priors, the estimate is obtained via 100 iterations of
the EM algorithm. Box plots of the mean square er-
ror (MSE) are reported in Figure 8. These plots show
that the performance of the estimators based on the
NG and NIG priors outperform those of classical mod-
els in that case. In Figure 9 are represented the box
plots of the number of estimated coefficients whose ab-
solute value is below T , T = 10−10 (the precision tuned
for the Lasso estimate) and T = 10−3, for K = 200.
The true number of zeros in that case is 197. The NG
outperforms the other models in identifying the zeros
of the model. On the contrary, as the NIG estimate
is not a thresholding rule, the median number of co-
efficients whose absolute value is below 10−10 for this
model is zero. However, most of the coefficients have
a very low absolute value, as the median of the coeffi-
cients with absolute value below 10−3 is equal to the
true value 197 (see Figure 9(b)). Moreover, the esti-
mator obtained by thresholding the coefficients whose
absolute value is below 10−3 to zero yields very minor
differences in terms of MSE.

5.2. Biscuit NIR Dataset

We consider the biscuits data which have been studied
in (Griffin & Brown, 2007; West, 2003). The matrix
X is composed of 300 (centered) NIR reflectance mea-
surements from 70 biscuit dough pieces. The obser-
vations y are the percentage of fat, sucrose, flour and
water associated to each piece. The objective here is
to predict the level of each of the ingredients from the
NIR reflectance measurements. The data are divided
into a training dataset (39 measurements) and a test
dataset (31 measurements). The fitted coefficients of
fat and flour, using 5-fold cross-validation, are repre-
sented in Figure 10. The estimated spikes are consis-
tent with the results obtained in (West, 2003; Griffin
& Brown, 2007). In particular, both models detect
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Figure 8. Box plots of the MSE associated to the simulated
data.
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Figure 9. Box plots of the number of estimated coefficients
whose absolute value is below a threshold T . Dash line
represents the true value of zero coefficients (197).

a spike at 1726nm, which lies in a region known for
fat absorbance. The predicted observations versus the
true observations are given in Figure 11 for the train-
ing and test datasets. The test data are well fitted
by the estimated coefficients. MSE errors for the test
dataset are reported in Table 2. The proposed models
show better performances for flour and similar perfor-
mances for fat.

6. Discussion

We have presented some flexible priors for linear re-
gression based on the NG and NIG models. The
NG prior yields sparse local maxima of the poste-
rior distribution whereas the NIG prior yields “almost
sparse” estimates; that is most of the coefficients are
extremely close to zero. We have shown that asymp-
totically these models are closely related to the vari-
ance gamma process and the normal-inverse Gaus-
sian process. Contrary to the NJ model or the RVM,

1200 1400 1600 1800 2000 2200 2400
−100

−50

0

50

100

Wavelength (nm)

β k

(a) Fat (NG)

1200 1400 1600 1800 2000 2200 2400
−60

−40

−20

0

20

40

60

80

Wavelength (nm)

β k

(b) Fat (NIG)

1200 1400 1600 1800 2000 2200 2400
−80

−60

−40

−20

0

20

40

60

80

Wavelength (nm)

β k

(c) Flour (NG)

1200 1400 1600 1800 2000 2200 2400
−50

0

50

Wavelength (nm)

β k

(d) Flour (NIG)

Figure 10. Coefficients estimated with a normal-gamma
(left) and normal-inverse Gaussian (right) prior for fat
(top) and flour (bottom) ingredients.

Table 2. MSE for biscuits NIR data

Flour Fat
NJ 9.93 0.56
RVM 6.48 0.56
NG 3.44 0.55
NIG 1.94 0.49

these models require specifying two hyperparameters.
However, using a simple cross-validation procedure we
have demonstrated that these models can perform sig-
nificantly better that well-established procedures. In
particular, the experimental performance of the NIG
model are surprisingly good and deserve being further
studied. The NG prior has been discussed in (Griffin &
Brown, 2007). It was discarded because of its spike at
zero and the flatness of the penalty for large values but
no simulations were provided. They favour another
model which relies on a cylinder parabolic function1.
The NG prior has nonetheless interesting asymptotic
properties in terms of Lévy processes and we have
demonstrated its empirical performances. The NG,
NIG and Laplace priors can also be considered as par-
ticular cases of generalized hyperbolic distributions.
This class of distributions has been used in (Snoussi &
Idier, 2006) for blind source separation.

The extension to (probit) classification is straightfor-

1The authors provide a link to a program to compute
this function. Unfortunately, it is extremely slow. The re-
sulting algorithm is at least one order of magnitude slower
than our algorithms which rely on Bessel functions.
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Figure 11. Observations versus predicted observations es-
timated with a normal-gamma (left) and normal-inverse
Gaussian (right) prior for fat (top) and flour (bottom) in-
gredients.

ward by adding latent variables corresponding to the
regression function plus some normal noise. Compu-
tationally it only requires adding one line in the EM
algorithm and one simulation step in the Gibbs sam-
pler.
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