
An Asymptotic Analysis of Generative, Discriminative, and
Pseudolikelihood Estimators

Percy Liang pliang@cs.berkeley.edu

Computer Science Division, University of California, Berkeley, CA, USA

Michael I. Jordan jordan@cs.berkeley.edu

Computer Science Division and Department of Statistics, University of California, Berkeley, CA, USA

Abstract

Statistical and computational concerns have
motivated parameter estimators based on
various forms of likelihood, e.g., joint, condi-
tional, and pseudolikelihood. In this paper,
we present a unified framework for studying
these estimators, which allows us to compare
their relative (statistical) efficiencies. Our
asymptotic analysis suggests that modeling
more of the data tends to reduce variance,
but at the cost of being more sensitive to
model misspecification. We present experi-
ments validating our analysis.

1. Introduction

Probabilistic models play a prominent role in domains
such as natural language processing, bioinformatics,
and computer vision, where they provide methods
for jointly reasoning about many interdependent vari-
ables. For prediction tasks, one generally models a
conditional distribution over outputs given an input.
There can be reasons, however, for pursuing alterna-
tives to conditional modeling. First, we might be able
to leverage additional statistical strength present in
the input by using generative methods rather than dis-
criminative ones. Second, the exact inference required
for a full conditional likelihood could be intractable;
in this case, one might turn to computationally more
efficient alternatives such as pseudolikelihood (Besag,
1975).

The generative-discriminative distinction has received
much attention in machine learning. The standing in-
tuition is that while discriminative methods achieve
lower asymptotic error, generative methods might be
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better when training data are limited. This intuition
is supported by the theoretical comparison of Naive
Bayes and logistic regression (Ng & Jordan, 2002) and
the recent empirical success of hybrid methods (Mc-
Callum et al., 2006; Lasserre et al., 2006).

Computational concerns have also spurred the devel-
opment of alternatives to the full likelihood; these
methods can be seen as optimizing an alternate
objective or performing approximate inference dur-
ing optimization. Examples include pseudolikelihood
(Besag, 1975), composite likelihood (Lindsay, 1988),
tree-reweighted belief propagation (Wainwright et al.,
2003), piecewise training (Sutton & McCallum, 2005),
agreement-based learning (Liang et al., 2008), and
many others (Varin, 2008).

We can think of all these schemes as simply different
estimators operating in a single model family. In this
work, we analyze the statistical properties of a class of
convex composite likelihood estimators for exponential
families, which contains the generative, discriminative,
and pseudolikelihood estimators as special cases.

The main focus of our analysis is on prediction error.
Standard tools from learning theory based on uniform
convergence typically only provide upper bounds on
this quantity. Moreover, they generally express esti-
mation error in terms of the overall complexity of the
model family.1 In our case, since all estimators operate
in the same model family, these tools are inadequate
for comparing different estimators.

Instead, we turn to asymptotic analysis, a mainstay
of theoretical statistics. There is much relevant sta-
tistical work on the estimators that we treat; note in
particular that Lindsay (1988) used asymptotic argu-
ments to show that composite likelihoods are generally

1There are more advanced techniques such as local
Rademacher complexities, which focus on the relevant re-
gions of the model family, but these typically only apply
to empirical risk minimization.
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less efficient than the joint likelihood. The majority of
these results are, however, focused on parameter esti-
mation. In the current paper, our focus is on predic-
tion, and we also consider model misspecification.

We draw two main conclusions from our analysis:
First, when the model is well-specified, conditioning
on fewer variables increases statistical efficiency; this
to some extent accounts for the better generalization
enjoyed by generative estimators and the worse perfor-
mance of pseudolikelihood estimators. Second, model
misspecification can severely increase both the approx-
imation and estimation errors of generative estimators.
We confirm our theoretical results by comparing our
three estimators on a toy example to verify the asymp-
totics and on a Markov model for part-of-speech tag-
ging.

2. Exponential Family Estimators

In structured prediction tasks, we are interested in
learning a mapping from an input space X to an out-
put space Y. Probabilistic modeling is a common plat-
form for solving such tasks, allowing for the natural
handling of missing data and the incorporation of la-
tent variables.

In this paper, we focus on regular exponential families,
which define distributions over an outcome space Z as
follows:

pθ(z)
def= exp{φ(z)>θ −A(θ)} for z ∈ Z, (1)

where φ(z) ∈ Rd is a vector of sufficient statistics
(features), θ ∈ Rd is a vector of parameters, and
A(θ) def= log

∫
eφ(z)>θν(dz) is the log-partition func-

tion. In our case, the outcomes are input-output pairs:
z = (x, y) and Z = X × Y.

Exponential families include a wide range of popular
models used in machine learning. For example, for a
conditional random field (CRF) (Lafferty et al., 2001)
defined on a graph G = (V,E), we have an output vari-
able for each node (y = {yi}i∈V ), and the features are
φ(x, y) =

∑
i∈V φnode(yi,x, i) +

∑
(i,j)∈E φedge(yi, yj).

From the density pθ(z), we can compute event proba-
bilities as follows:

pθ(z ∈ s) = exp{A(θ; s)−A(θ)}, (2)

where A(θ; s) = log
∫
eφ(z)>θ

1[z ∈ s]ν(dz) is a condi-
tional log-partition function.

2.1. Composite Likelihood Estimators

In this paper, we consider a class of composite likeli-
hood estimators (Lindsay, 1988), which is incidentally

equivalent to the multi-conditional learning framework
of McCallum et al. (2006). A composite likelihood con-
sists of a weighted sum of component likelihoods, each
of which is the probability of one subset of variables
conditioned on another. In this work, we only consider
the case where the first set is all the variables.

We adopt the following more fundamental way of spec-
ifying the components: Each component r is defined by
a partitioning of the outcome space Z. We represent a
partitioning by an associated equivalence function that
maps each z ∈ Z to its partition:

Definition 1 (Equivalence function). An equivalence
function r is a measurable map from Z to measurable
subsets of Z such that for each z ∈ Z and z′ ∈ r(z),
r(z) = r(z′).

The component likelihood associated with r takes the
following form:

pθ(z | z ∈ r(z)) = exp{φ(z)>θ −A(θ; r(z))}. (3)

By maximizing this quantity, we are intuitively taking
probability mass away from some neighborhood r(z)
of z and putting it on z.

Without loss of generality, assume the component
weights sum to 1, so we can think of taking an ex-
pectation over a random component R drawn from
some fixed distribution Pr. We then define the crite-
rion function:

mθ(z)
def= ER∼Pr log pθ(z | z ∈ R(z)). (4)

Given data points Z(1), . . . , Z(n) drawn i.i.d. from
some true distribution p∗ (not necessarily in the ex-
ponential family), the maximum composite likelihood
estimator is defined by averaging the criterion function
over these data points:

θ̂ = argmax
θ

Êmθ(Z), (5)

where Êmθ(Z) = 1
n

∑n
i=1mθ(Z(i)).

We can now place the three estimators of interest in
our framework:

Generative: We have one component rg(x, y) = X ×
Y, which has one partition—the whole outcome space.

Fully discriminative: We have one component
rd(x, y) = x×Y. The outcomes in each partition have
the same value of x, but different y.

Pseudolikelihood discriminative: Assume y =
{yi}i∈V . For each i ∈ V , we have a component
ri(x, y) = {(x′, y′) : x′ = x, y′ ∈ Y, y′j = yj for j 6= i}.
Pr is uniform over these components.
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v⊗ = vv>

Parameter estimates
p∗ true distribution of the data
mθ criterion function (defines the estimator)
R risk (expected log-loss)
θ̂ = argmaxθ Êmθ(Z) [empirical parameter estimate]
θ◦ = argmaxθ Emθ(Z) [limiting parameter vector]
Random variables for asymptotic analysis
R ∼ Pr [choose composite likelihood component]
rd(x, y) = x× Y [fully discriminative component]
φ = φ(Z), Z ∼ p∗ [sample from true distribution]
φt = φ(Zt), Zt ∼ p∗(· | · ∈ R(Z)) [from true distrib.]
φm = φ(Zm), Zm ∼ pθ◦(· | · ∈ R(Z)) [for estimation]
φe = φ(Ze), Ze ∼ pθ◦(· | · ∈ rd(Z)) [for prediction]

Table 1. Notation used in the paper.

2.2. Prediction and Evaluation

Given a parameter estimate θ̂, we make predictions
based on pθ̂(y | x). In this paper, we evaluate our
model according to log-loss; the risk is the expected
log-loss:

R(θ) = E(X,Y )∼p∗ [− log pθ(Y | X)]. (6)

The quality of an estimator is determined by the gap
between the risk of the estimate R(θ̂) and the Bayes
risk R∗ = H(Y | X). It will be useful to relate these
two via the risk of θ◦ = argmaxθ EZ∼p∗ mθ(Z), which
leads to the following standard decomposition:

R(θ̂)−R∗︸ ︷︷ ︸
total error

= (R(θ̂)−R(θ◦))︸ ︷︷ ︸
estimation error

+ (R(θ◦)−R∗)︸ ︷︷ ︸
approx. error

. (7)

The estimation error is due to having only finite data;
the approximation error is due to the intrinsic subop-
timality of the estimator.2

3. Asymptotic Analysis

We first compute the asymptotic estimation errors
of composite likelihood estimators in general (Sec-
tions 3.1 and 3.2). Then we use these results to com-
pare the estimators of interest (Sections 3.3 and 3.4).

In this paper, we assume that our exponential family
is identifiable.3 Also assume that our estimators con-
verge (θ̂ P−→ θ◦) and are consistent when the model is

2Note that θ◦ is not necessarily the minimum risk pa-
rameter vector in the model family.

3In the non-identifiable case, the analysis becomes more
cluttered, but the results are essentially the same, since
predictions depend on only the distributions induced by
the parameters. See the longer version of this paper for an
in-depth discussion.

well-specified (if p∗ = pθ∗ , then θ◦ = θ∗). Note, how-
ever, that in general we do not assume that our model
is well-specified.

Our asymptotic analysis is driven by Taylor expan-
sions, so we need to compute a few derivatives. The
derivatives of the log-partition function are moments
of the sufficient statistics (a standard result, see Wain-
wright and Jordan (2003)):

Ȧ(θ; s) = EZ∼pθ(·|·∈s)(φ(Z)) (8)

Ä(θ; s) = varZ∼pθ(·|·∈s)(φ(Z)). (9)

From these moments, we can obtain the derivatives
of mθ◦ and R (to simplify notation, we express these
in terms of random variables whose distributions are
defined in Table 1):

ṁθ◦ = φ− E(φm | Z) (10)
m̈θ◦ = −E[var(φm | R(Z)) | Z] (11)
Ṙ(θ◦) = E(φe − φ) (12)
R̈(θ◦) = E var(φe | Z). (13)

3.1. Asymptotics of the Parameters

We first analyze how fast θ̂ converges to θ◦ by comput-
ing the asymptotic distribution of θ̂−θ◦. In Section 3.2
we use this result to get the asymptotic distribution of
the estimation error R(θ̂)−R(θ◦).

The following standard lemma will prove to be very
useful in our analysis:
Lemma 1. For random vectors X,Y, Z, we have
var(X | Z) = E[var(X | Y,Z) | Z] + var[E(X | Y,Z) |
Z].

The important implication of this lemma is that con-
ditioning on another variable Y reduces the variance
of X. This lemma already hints at how conditioning
on more variables can lead to poorer estimators: con-
ditioning reduces the variance of the data, which can
make it harder to learn about the parameters.

The following theorem gives us the asymptotic vari-
ance of a general composite likelihood estimator:
Theorem 1 (Asymptotic distribution of the parame-
ters). Assume θ̂ P−→ θ◦. Then

√
n(θ̂ − θ◦)→ N (0,Σ) . (14)

The asymptotic variance is

Σ = Γ−1 + Γ−1(Cc + Cm)Γ−1, (15)

where Γ = E var(φm | R(Z)) is the sensitivity, Cc =
E var[E(φm | R(Z)) | Z] is the component correction,
and Cm = E[var(φt | Z) − var(φm | Z)] + E[E(φt |
Z)− E(φm | Z)]⊗ is the misspecification correction.
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Proof. The standard asymptotic normality result for
M-estimators (Theorem 5.21 of van der Vaart (1998)),
which includes composite likelihood estimators, gives
us the asymptotic variance:

Σ = (Em̈θ◦)−1(Eṁ⊗θ◦)(Em̈θ◦)−1. (16)

The remainder of the proof simply re-expresses Σ in
terms of more interpretable quantities. Algebraic ma-
nipulation of (10) yields:

Eṁ⊗θ◦ = E[(φ−E(φt | Z))+(E(φt | Z)−E(φm | Z))]⊗.

Note that cross terms cancel conditioned on Z and
that E[φ− E(φt | Z)]⊗ = E[φt − E(φt | Z)]⊗, so

Eṁ⊗θ◦ = Cm + E var(φm | Z). (17)

We then apply Lemma 1 to decompose the second term
of the right-hand side:

E var(φm | Z) = (18)
E var(φm | R(Z)) + E var[E(φm | R(Z)) | Z].

Substitute (18) into (17) to get an expression for Eṁ⊗θ◦ ;
(11) already provides one for Em̈θ◦ . Substitute these
two expressions into (16) and simplify to get (15).

The decomposition in (15) allows us to make sev-
eral qualitative judgments. First, the sensitivity Γ =
E var(φm | R(Z)) is the expected amount of varia-
tion in the features given Z and R (equivalently, given
R(Z)). The larger the sensitivity, the more the data
can tell us about the parameters, and thus the lower
the asymptotic variance will be.

The component correction Cc intuitively measures how
different the feature expectations E(φm | R(Z)) under
the various components are. Cc is zero for the genera-
tive and fully discriminative estimators, but the pseu-
dolikelihood discriminative estimator pays a penalty
for having more than one component.

The misspecification correction Cm is zero when the
model is well-specified (in this case, φm | Z d= φt | Z),
but is in general nonzero under model misspecification.
In this latter case, one incurs a nonzero approximation
error (defined in (7)) as expected, but we see that there
is also a nonzero effect on estimation error.

3.2. Asymptotics of the Risk

The following theorem turns Theorem 1 from a state-
ment about the asymptotic distribution of the param-
eters into one about the risk:

Theorem 2 (Asymptotic distribution of the risk). Let
Σ be the asymptotic variance as defined in (15). De-
note Ṙ def= Ṙ(θ◦) and R̈ def= R̈(θ◦). Then

√
n(R(θ̂)−R(θ◦)) d−→ N

(
0, Ṙ>ΣṘ

)
. (19)

Furthermore, if Ṙ = 0, then

n(R(θ̂)−R(θ◦)) d−→ 1
2

trW
(
R̈ 1

2 ΣR̈ 1
2 , 1
)
, (20)

where W(V, n) is the Wishart distribution with n de-
grees of freedom.

Proof. Perform a Taylor expansion of the risk function
around θ◦:

R(θ̂) = R(θ◦) + Ṙ>(θ̂ − θ◦) + (21)
1
2

(θ̂ − θ◦)>R̈(θ̂ − θ◦) + o(||θ̂ − θ◦||2).

We use a standard argument known as the delta
method (van der Vaart, 1998). Multiplying (21) on
both sides by

√
n, rearranging terms, and applying

Slutsky’s theorem, we get (19). However, when Ṙ = 0,
the first-order term of the expansion (21) is zero,
so we must consider the second-order term to get a
non-degenerate distribution. Note that R̈ is positive
semidefinite. Multiplying (21) by n and rearranging
yields the following:

n(R(θ̂)−R(θ◦)) =
1
2

tr
(

[R̈ 1
2
√
n(θ̂ − θ◦)]⊗

)
+ · · ·

Since R̈ 1
2
√
n(θ̂ − θ◦) d−→ N (0, R̈ 1

2 ΣR̈ 1
2 ), applying the

continuous mapping theorem with the outer product
function yields a Wishart as the limiting distribution.
Thus, n(R(θ̂)−R(θ◦)) is asymptotically equal in dis-
tribution to 1

2 times the trace of a sample from that
Wishart distribution.

We can also understand (20) in the following way.
Let V = R̈ 1

2 ΣR̈ 1
2 . Note that 1

2 trW(V, 1) d=
1
2 tr (VW(I, 1)), which is the distribution of a weighted
sum of independent χ2

1 variables, where the weights
are determined by the diagonal elements of V . The
mean of this distribution is 1

2 tr(V ) and the variance is
tr(V • V ), where • denotes elementwise product.

An important question is when we obtain the ordi-
nary O(n−

1
2 ) convergence (19) versus the much better

O(n−1) convergence (20). A sufficient condition for
O(n−1) convergence is Ṙ(θ◦) = 0. When the model is
well-specified, this is true for any consistent estimator.

Even if the model is misspecified, the fully discrimi-
native estimator still achieves the O(n−1) rate. The
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reason is that whenever a training criterion mθ is the
same (up to constants) as the test criterion R(·), Ṙ
vanishes and we obtain the O(n−1) rate. This is in
concordance with a related observation made by Wain-
wright (2006) that it is better to use the same inference
procedure at both training and test time.

When the model is well-specified, there is another ap-
pealing property that holds if the training and test
criterion are the same up to constants: the asymp-
totic distribution of the risk depends on only the di-
mensionality of the exponential family, not the actual
structure of the model. In particular, for composite
likelihood estimators with one component, Σ = Γ−1 =
(−Em̈θ◦)−1 = R̈−1. Therefore, R̈ 1

2 ΣR̈ 1
2 = Id and so

n(R(θ̂) − R(θ◦)) d−→ 1
2 trW(Id, 1) d= 1

2χ
2
d, where d is

the number of parameters. This result is essentially
another way of looking at the fact that the likelihood
ratio test statistic is asymptotically distributed as χ2.

3.3. Comparing Estimation Errors

In the previous section, we analyzed the asymptotics
of a single estimator. Now, given two estimators, we
would like to be able to tell which one is better. In or-
der to compare two estimators, it would be convenient
if they converged to the same limit. In this section,
we ensure this by assuming that the model is well-
specified and that our estimators are consistent.

Since all parameter estimates are used in the same
way for prediction, it suffices to analyze the relative
efficiencies of the parameter estimates. The following
theorem says that coarser partitionings of Z generally
lead to more efficient estimators:

Theorem 3 (Asymptotic relative efficiency). Let θ̂1
and θ̂2 be two consistent estimators with asymptotic
variances Σ1 and Σ2 as defined in (15). Assume that
R1 is constant (θ̂1 has exactly one component) and
R1(z) ⊃ R2(z) for all z ∈ Z. If the model is well-
specified, then Σ1 � Σ2 (θ̂1 is no worse than θ̂2).

Proof. We first show that Γ−1
1 � Γ−1

2 , where Γ1 and
Γ2 are the sensitivities of the two estimators. Because
the model is well-specified, Γk = E var(φt | Rk(Z)) for
k = 1, 2. The assumption R1(Z) ⊃ R2(Z) means that
R2(Z) provides more information about Z thanR1(Z);
formally, the σ-fields satisfy σ(R1(Z)) ⊂ σ(R2(Z)).
Thus, we can use Lemma 1 to decompose the variance:
Γ1 = E var(φt | R2(Z))+E var[E(φt | R2(Z)) | R1(Z)].
The first term of the right-hand side is exactly Γ2 and
the second term is positive semidefinite, so Γ1 � Γ2,
which implies Γ−1

1 � Γ−1
2 .

Let Cc1 and Cc2 be the component corrections of the

two estimators. Note that Cc1 = 0 because the R1

is constant, so Cc1 � Cc2. The misspecification cor-
rections are both zero. Putting these results together
yields the theorem.

One might wonder if we really need R1 to be constant.
Is it not enough to just assume that R1(z) ⊃ R2(z)
(for some coupling of R1 and R2)? The answer is no,
as the following counterexample shows:

Counterexample Let Z = {1, 2, 3}. The general
shape of the distribution is given by the single feature
φ(1) = 1, φ(2) = 3, φ(3) = 2 and a scalar parame-
ter θ controls the peakiness of the distribution. Let
the true parameter be θ∗ = 1. Consider two esti-
mators: θ̂1 has two components, r1a = {{1, 2}, {3}}
and r1b = {{1}, {2, 3}}; θ̂2 also has two components,
r2a = {{1, 2}, {3}} and r2b = {{1}, {2}, {3}}.

Coupling r1a with r2a and r1b with r2b, we have
R1(z) ⊃ R2(z). However, we computed and found
that Γ1 u 4.19 and Γ2 u 3.15, so θ̂2 actually has lower
asymptotic variance although it has finer partitionings.

To explain this, note that the contribution of r2b to
the criterion function is zero, so the second estimator
is equivalent to just using the single component r2a
(= r1a), so the first estimator actually suffers by us-
ing the additional component r1b. In general, while
we would still expect coarser partitionings to be bet-
ter even for estimators with many components, this
counterexample shows that we must exercise caution.

3.4. Comparing Estimators

Finally, we use Theorem 3 to compare the estimation
and approximation errors of the generative (θ̂g), fully
discriminative (θ̂d), and pseudolikelihood discrimina-
tive (θ̂p) estimators. The subscripts g,d,p will be at-
tached to other variables to refer to the quantities as-
sociated with the corresponding estimators. In the fol-
lowing corollaries, we use the word “lower” loosely to
mean “no more than,” although in general we expect
the inequality to be strict.

Corollary 1 (Generative versus fully discriminative).
(1) If the model is well-specified, θ̂g has lower asymp-
totic estimation error than θ̂d; both have zero approx-
imation error. (2) If the model is misspecified, θ̂d has
lower approximation and asymptotic estimation errors
than θ̂g.

Proof. For (1), since Rd(z) ⊂ Rg(z), we have Σg � Σd

by Theorem 3. Zero approximation error follows from
consistency. For (2), since the discriminative estimator



An Asymptotic Analysis of Generative, Discriminative, and Pseudolikelihood Estimators

achieves the minimum risk in the model family, it has
the lowest approximation error. Also, by Theorem 2
and the ensuing discussion, it always converges at a
O(n−1) rate, whereas the generative estimator will in
general converge at a O(n−

1
2 ) rate.

Note that there is a qualitative change of asymptotics
in going from the well-specified to the misspecified sce-
nario. This discontinuity demonstrates one weakness
of asymptotic analyses: we would expect that for a
very minor model misspecification, the generative es-
timator would still dominate the discriminative esti-
mator for moderate sample sizes, but even a small
misspecification is magnified in the asymptotic limit.

In the following toy example where the model is well-
specified, we see concretely that the generative estima-
tor has smaller asymptotic estimation error:

Example Consider a model where x and y are bi-
nary variables: φ(x, y)>θ = θ01[x = 0, y = 1] +
θ11[x = 1, y = 1], where the true parameters are θ∗ =
(0, 0). We can compute Γg = var(φ) = 1

16

(
3 −1
−1 3

)
and R̈(θ∗) = Γd = E var(φ | X) = 1

16

(
2 0
0 2

)
. The

mean asymptotic estimation error (scaled by n) of the
generative estimator is 1

2 tr(ΓdΓ−1
g ) = 3

4 while that of
the discriminative estimator is 1

2 tr(ΓdΓ−1
d ) = 1.

We now show that fully discriminative estimators are
statistically superior to pseudolikelihood discrimina-
tive estimators in all regimes, but of course pseudo-
likelihood is computationally more efficient.

Corollary 2 (Fully discriminative versus pseudolikeli-
hood discriminative). (1) If the model is well-specified,
θ̂d has lower asymptotic estimation error than θ̂p; both
have zero approximation error. (2) If the model is mis-
specified, θ̂d has lower approximation and asymptotic
estimation errors than θ̂p.

Proof. For (1), since Rp(z) ⊂ Rd(z), Σd � Σp by The-
orem 3. Zero approximation error follows from consis-
tency. For (2), the same arguments as the correspond-
ing part of the proof of Corollary 1 apply.

4. Experiments

In this section, we validate our theoretical analysis em-
pirically. First, we evaluate the three estimators on a
simple graphical model which allows us to plot the
real asymptotics of the estimation error (Section 4.1).
Then we show that in the non-asymptotic regime, the
qualitative predictions of the asymptotic analyses are
also valid (Section 4.2).

4.1. A Simple Graphical Model

Consider a four-node binary-valued graphical model
where z = (x1, x2, y1, y2). The true model family
p∗ is an Markov random field parametrized by θ∗ =
(α∗, β∗, γ∗) as follows:

φ(z)>θ = α1[y1 = y2] + β(1[x1 = y1] + 1[x2 = y2]) +
γ(1[x1 = y2] + 1[x2 = y1]).

To emulate misspecification, we set γ∗ to be nonzero
and force γ = 0 during parameter estimation.

In the first experiment, we estimated the variance (by
running 10K trials) of the estimation error as we in-
creased the number of data points. We set α∗ = β∗ =
1 for the true model. When γ∗ = 0 (the model is
well-specified), Figures 1(a)–(c) show that scaling the
variance by n yields a constant; this implies that all
three estimators achieve O(n−1) convergence.

When the model is misspecified with γ∗ = 0.5 (Fig-
ures 1(d)–(f)), there is a sharp difference between
the rates of the generative and discriminative estima-
tors. The fully discriminative estimator still enjoys
the O(n−1) convergence; scaling by n reveals that the
generative and pseudolikelihood discriminative estima-
tors are only attaining a O(n−

1
2 ) rate as predicted by

Theorem 2 (Figure 1(f)). Note that the generative
estimator is affected most severely.

Figures 1(g)–(h) demonstrate the non-asymptotic im-
pact of varying the parameters of the graphical model
in terms of the total error. In (g), as we increase the
amount of misspecification γ, the error increases for
all estimators, but most sharply for the generative es-
timator. In (h), as we increase the strength of the
edge potential α, the pseudolikelihood discriminative
estimator suffers, the fully discriminative estimator is
unaffected, and the generative estimator actually im-
proves.

4.2. Part-of-speech Tagging

In this section, we present experiments on part-of-
speech (POS) tagging. In POS tagging, the input is a
sequence of words x = (x1, . . . , x`) and the output is a
sequence of POS tags y = (y1, . . . , y`), e.g., noun, verb,
etc. (There are 45 tags total.) We consider the follow-
ing model, specified by the following features (roughly
2 million total):

φ(x, y) =
∑̀
i=1

φnode(yi, xi) +
`−1∑
i=1

φedge(yi, yi+1), (22)

where the node features φnode(yi, xi) are a vector of
indicator functions of the form 1[yi = a, xi = b], and



An Asymptotic Analysis of Generative, Discriminative, and Pseudolikelihood Estimators

20K 40K 60K 80K 100K

n

4.3e-7

8.4e-7

1.3e-6

1.7e-6

2.1e-6

va
r(

E
st

E
r
r
)

20K 40K 60K 80K 100K

n

1.9e-5

3.2e-5

4.5e-5

5.9e-5

7.2e-5

√
n
·v

ar
(E

st
E
r
r

)

20K 40K 60K 80K 100K

n

1.8e-3

2.0e-3

2.2e-3

2.5e-3

2.7e-3

n
·v

ar
(E

st
E
r
r

)

(a) α∗ = β∗ = 1 (b) α∗ = β∗ = 1 (c) α∗ = β∗ = 1

20K 40K 60K 80K 100K

n

2.5e-6

5.0e-6

7.5e-6

1.0e-5

1.2e-5

va
r(

E
st

E
r
r
)

20K 40K 60K 80K 100K

n

9.2e-5

1.8e-4

2.6e-4

3.5e-4

4.3e-4

√
n
·v

ar
(E

st
E
r
r

)

20K 40K 60K 80K 100K

n

1.4e-2

2.5e-2

3.7e-2

4.9e-2

6.1e-2

n
·v

ar
(E

st
E
r
r

)

(d) α∗ = β∗ = 1 (e) α∗ = β∗ = 1 (f) α∗ = β∗ = 1

0.2 0.4 0.6 0.8 1.0

γ

9.7e-3

1.9e-2

2.9e-2

3.9e-2

4.8e-2

T
o
t
a
l
E
r
r

0.6 1.2 1.8 2.4 3.0

α

3.6e-9

4.8e-9

5.9e-9

7.1e-9

8.3e-9

T
o
t
a
l
E
r
r

Generative θ◦g
Fully discrim. θ◦d
Pseudo. discrim. θ◦p

(g) Vary misspecification (h) Vary edge potentials

Figure 1. Asymptotics of the simple four-node graphical model. In (a)–(c), α∗ = β∗ = 1 and γ∗ = 0; we plot the
asymptotic variance of the estimation error, scaled by 1,

√
n, and n. In (d)–(f), we repeat with γ∗ = 0.5. In (g), we take

n = 20000 examples, α∗ = β∗ = 1 and vary γ. In (h), we take n = 20000, β∗ = 1, γ∗ = 0 and vary α.

the edge features φedge(yi, yi+1) are a vector of indica-
tor functions of the form 1[yi = a, yi+1 = b]. Trained
generatively, this model is essentially an HMM, but
slightly more expressive. Trained (fully) discrimina-
tively, this model is a CRF.

We used the Wall Street Journal (WSJ) portion of the
Penn Treebank, with sections 0–21 for training (38K
sentences) and 22–24 for testing (5.5K sentences). Ta-
ble 2(a) shows that the discriminative estimators per-
form better than the generative one. This is not sur-
prising given that the model is misspecified (language
does not come from an HMM).

To verify that the generative estimator is superior
when the model is well-specified, we used the learned
generative model in the previous experiment to sample
1000 synthetic training and 1000 synthetic test exam-
ples. We then applied the estimators as before on this
artificial data. Table 2(b) shows that the generative es-

Accuracy Log-loss
Train Test Train Test

Gen. 0.940 0.935 4.628 4.945
Fully dis. 0.977 0.956 1.480 3.120
Pseudo dis. 0.975 0.955 1.562 3.170

(a) Real data (misspecified)

Accuracy Log-loss
Train Test Train Test

Gen. 0.989 0.898 0.570 7.297
Full dis. 0.992 0.879 0.407 12.431
Pseudo dis. 0.990 0.891 0.469 10.840

(b) Synthetic data (well-specified)

Table 2. Part-of-speech tagging results. Discriminative es-
timators outperform the generative estimator (on both test
accuracy and log-loss) when the model is misspecified, but
the reverse is true when the model is well-specified.
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timator has an advantage over the fully discriminative
estimator, and both are better than the pseudolikeli-
hood estimator.

5. Discussion and Extensions

We believe our analysis captures the essence of the
generative-discriminative distinction: by modeling the
input, we reduce the variance of the parameter esti-
mates. In related work, Ng and Jordan (2002) showed
that Naive Bayes requires exponentially fewer exam-
ples than logistic regression to obtain the same esti-
mation error. The key property needed in their proof
was that the Naive Bayes estimator decouples into d
independent closed form optimization problems, which
does not seem to be the defining property of genera-
tive estimation. In particular, this property does not
apply to general globally-normalized generative mod-
els, but one would still expect those models to have
the advantages of being generative.

Given that the generative and discriminative estima-
tors are complementary, one natural question is how
to interpolate between the two to get the benefits of
both. Our framework naturally suggests two ways to
go about this. First, we could vary the coarseness of
the partitioning. Generative and discriminative esti-
mators differ only in this coarseness and there is a
range of intermediate choices corresponding to condi-
tioning on more or fewer of the input variables. Sec-
ond, we could take a weighted combination of esti-
mators (e.g., Bouchard and Triggs (2004); McCallum
et al. (2006)). For one-parameter models, Lindsay
(1988) derived the optimal weighting of the component
likelihoods, but unfortunately these results cannot be
applied directly in practice.

It would also be interesting to perform a similar
asymptotic analysis on other estimators used in prac-
tice, for example marginal likelihoods with latent vari-
ables, tree-reweighted belief propagation (Wainwright
et al., 2003; Wainwright, 2006), piecewise training
(Sutton & McCallum, 2005), etc. Another important
extension is to curved exponential families, which ac-
count for many of the popular generative models based
on directed graphical models.

6. Conclusion

We have analyzed the asymptotic distributions of com-
posite likelihood estimators in the exponential family.
The idea of considering different partitionings of the
outcome space allows a clean and intuitive character-
ization of the asymptotic variances, which enables us
to compare the commonly used generative, discrimina-

tive, and pseudolikelihood estimators as special cases.
Our work provides new theoretical support for exist-
ing intuitions and a basis for developing new estima-
tors which balance the tradeoff between computational
and statistical efficiency.

Acknowledgments We thank Peter Bartlett for
useful discussions and Simon Lacoste-Julien for com-
ments. We also wish to acknowledge NSF grant
0509559 and a grant from Microsoft Research.

References

Besag, J. (1975). The analysis of non-lattice data. The
Statistician, 24, 179–195.

Bouchard, G., & Triggs, B. (2004). The trade-off between
generative and discriminative classifiers. International
Conference on Computational Statistics (pp. 721–728).

Lafferty, J., McCallum, A., & Pereira, F. (2001). Condi-
tional random fields: Probabilistic models for segment-
ing and labeling data. International Conference on Ma-
chine Learning (ICML).

Lasserre, J. A., Bishop, C. M., & Minka, T. P. (2006). Prin-
cipled hybrids of generative and discriminative models.
Computer Vision and Pattern Recognition (CVPR) (pp.
87–94).

Liang, P., Klein, D., & Jordan, M. I. (2008). Agreement-
based learning. Advances in Neural Information Pro-
cessing Systems (NIPS).

Lindsay, B. (1988). Composite likelihood methods. Con-
temporary Mathematics, 80, 221–239.

McCallum, A., Pal, C., Druck, G., & Wang, X. (2006).
Multi-conditional learning: Generative/discriminative
training for clustering and classification. Association for
the Advancement of Artificial Intelligence (AAAI).

Ng, A. Y., & Jordan, M. I. (2002). On discriminative vs.
generative classifiers: A comparison of logistic regres-
sion and naive Bayes. Advances in Neural Information
Processing Systems (NIPS).

Sutton, C., & McCallum, A. (2005). Piecewise training of
undirected models. Uncertainty in Artificial Intelligence
(UAI).

van der Vaart, A. W. (1998). Asymptotic Statistics. Cam-
bridge University Press.

Varin, C. (2008). On composite marginal likelihoods. Ad-
vances in Statistical Analysis, 92, 1–28.

Wainwright, M. (2006). Estimating the “wrong” graphi-
cal model: Benefits in the computation-limited setting.
Journal of Machine Learning Research, 7, 1829–1859.

Wainwright, M., Jaakkola, T., & Willsky, A. (2003). Tree-
reweighted belief propagation algorithms and approxi-
mate ML estimation by pseudo-moment matching. Ar-
tificial Intelligence and Statistics (AISTATS).

Wainwright, M., & Jordan, M. I. (2003). Graphical models,
exponential families, and variational inference (Techni-
cal Report). Department of Statistics, University of Cal-
ifornia at Berkeley.


