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Abstract

Most existing sparse Gaussian process (g.p.)
models seek computational advantages by
basing their computations on a set of m basis
functions that are the covariance function of
the g.p. with one of its two inputs fixed. We
generalise this for the case of Gaussian covari-
ance function, by basing our computations on
m Gaussian basis functions with arbitrary di-
agonal covariance matrices (or length scales).
For a fixed number of basis functions and
any given criteria, this additional flexibility
permits approximations no worse and typ-
ically better than was previously possible.
We perform gradient based optimisation of
the marginal likelihood, which costs O(m2n)
time where n is the number of data points,
and compare the method to various other
sparse g.p. methods. Although we focus on
g.p. regression, the central idea is applicable
to all kernel based algorithms, and we also
provide some results for the support vector
machine (s.v.m.) and kernel ridge regression
(k.r.r.). Our approach outperforms the other
methods, particularly for the case of very few
basis functions, i.e. a very high sparsity ratio.

1. Introduction

The Gaussian process (g.p.) is a popular non-
parametric model for supervised learning problems.
Although g.p.’s have been shown to perform well on a
wide range of tasks, their usefulness is severely lim-
ited by the O(n3) time and O(n2) storage require-
ments where n is the number of data points. A large
amount of work has been done to alleviate this prob-
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lem, either by approximating the posterior distribu-
tion, or constructing degenerate covariance functions
for which the exact posterior is less expensive to eval-
uate (Smola & Bartlett, 2000; Csató & Opper, 2002;
Lawrence et al., 2002; Seeger et al., 2003; Snelson
& Ghahramani, 2006) — for a unifying overview see
(Quiñonero-Candela & Rasmussen, 2005). The major-
ity of such methods achieve an O(m2n) time complex-
ity for training where m ≪ n is the number of points
on which the computations are based.

The g.p. can be interpreted as a linear (in the pa-
rameters) model which, due to its non-parametric na-
ture, has potentially as many parameters to estimate
as there are training points. An exception is the case
where the covariance function has finite rank, such as
the linear covariance function on R

d × R
d given by

k(x,x′) = x⊤x′, which has rank d. In this case the
g.p. collapses to a parametric method and it is possible
to derive algorithms with O(d2n) time complexity by
basing the computations on d basis functions.

For non-degenerate covariance functions, most existing
sparse g.p. algorithms all have in common that they
base their computations on m basis functions of the
form k(vi, ·). Typically the set V = {v1,v2, . . . ,vm}
is taken to be a subset of the training set (Smola &
Bartlett, 2000; Csató & Opper, 2002; Seeger et al.,
2003). For example Seeger et al. (Seeger et al., 2003)
employ a highly efficient approximate information gain
criteria to incrementally select points from the training
set in a greedy manner.

More recently Snelson and Ghahramani (2006) have
shown that further improvements in the quality of the
model for a given m can be made — especially for small
m — by removing the restriction that V be a subset of
the training set. For this they introduced a new sparse
g.p. model which has the advantage of being closer to
the full g.p., and also of being more amenable to gradi-
ent based optimisation of the marginal likelihood with
respect to the set V. A further advantage of their con-
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tinuous optimisation of V is that the hyper-parameters
of the model can be optimised at the same time — this
is more difficult when V is taken to be a subset of the
training set, since choosing such a subset is a hard
combinatoric problem.

In this paper we take a logical step forward in the de-
velopment of sparse g.p. algorithms. We also base our
computations on a finite set of basis functions, but
remove the restriction that the basis functions be of
the form k(vi, ·) where k is the covariance of the g.p.
This will require computing integrals involving the ba-
sis and covariance functions, and so cannot always be
done in closed form. Fortunately however, closed form
expressions can be obtained for arguably the most use-
ful scenario, namely that of Gaussian covariance func-
tion (with arbitrary diagonal covariance matrix) along
with Gaussian basis functions (again each with their
own arbitrary diagonal covariance matrix).

The central idea is that, under some mild restrictions,
we can compute the prior probability density — under
the g.p. model with Gaussian covariance — of arbi-
trary Gaussian mixtures. Our analysis is new, but
there is a precedent for it in the literature. In par-
ticular, Walder et al. (2006) employ a similar idea,
but from an reproducing kernel Hilbert space (r.k.h.s.)
rather than a g.p. perspective, and for a different ba-
sis and covariance function. Also related is (Gehler &
Franz, 2006), which analyses from a g.p. perspective
with arbitrary basis and covariance function, but with
the difference that they do not take infinite limits.

Our idea has a direct r.k.h.s. analogy. Indeed the main
idea is applicable to any kernel machine, but in this pa-
per we focus on the g.p. framework. The main reason
for this is that it allows us to build on the sparse g.p.
model of Snelson and Ghahramani (2006), which has
been shown to be amenable to gradient based optimi-
sation of the marginal likelihood. Nonetheless we do
provide some experimental results for the kernel ridge
regression (k.r.r.) case, as well as an animated toy ex-
ample of the support vector machine (s.v.m.), in the
accompanying video.

The paper is structured as follows. Section 2 provides
an introduction to g.p. regression. In Section 3 we
derive the likelihood of arbitrary Gaussian mixtures
under the g.p. model with Gaussian covariance, and
clarify the link to r.k.h.s.’s. In Section 4 we discuss
and motivate the precise probabilistic model which we
use to make practical use of our theoretical results.
Experimental results and conclusions are presented in
Sections 5 and 6, respectively.

2. Gaussian Process Regression

We assume that we are given an independent and iden-
tically distributed (i.i.d.) sample

S = {(x1, y1) , . . . , (xn, yn)} ⊂ R
d × R

drawn from an unknown distribution, and the goal is
to estimate p(y|x). We introduce a latent variable u ∈
R, and make the assumption that p(y|u,x) = p(y|u).
Hence we can think of y as a noisy realisation of u,
which we model by p(y|u) = N (y|u, σ2

n) where σn is a
hyper-parameter.1

The relationship x → u is a random process u(·),
namely a zero mean g.p. with covariance function
k : R

d × R
d → R. Typically k will be defined in terms

of further hyper-parameters. We shall denote such a
g.p. as G(k), which is defined by the fact that its joint
evaluation at a finite number of input points is a zero
mean Gaussian random variable with covariance

Ef∼G(k) [f(x)f(z)] = k(x,z).

One can show that given the hyper-parameters, the
posterior p(u|S), where2 [u]i = u(xi), is

p(u|S) ∝ p(u)N (y|u, σ2
nI)

∝ N
(

u|Kxx(Kxx + σ2
nI)−1y, σ2

nKxx(Kxx + σ2
nI)−1

)

,

(1)

where [Kxx]ij = k(xi,xj). Like many authors we
neglect to notate the conditioning upon the hyper-
parameters, both in the above expression and for the
remainder of the paper. Now, it can also be shown
that the latent function u∗ = u(x∗) at an arbitrary
test point x∗ is distributed according to p(u∗|x∗,S) =
∫

p(u∗|x∗,S,u)p(u|x∗,S) du = N (u∗|µ∗, σ
2
∗), where

µ∗ = y⊤(Kxx + σ2
nI)−1k∗, (2)

σ2
∗ = k(x∗,x∗) − k⊤

∗ (Kxx + σ2
nI)−1k∗, (3)

and we have defined [k∗]i = k(x∗,xi).

In a Bayesian setting, one places priors over the
hyper-parameters and computes the hyper-posterior,
but this usually involves costly numerical integration
techniques. Alternatively one may fix the hyper-
parameters to those obtained by maximising some cri-
teria such as the marginal likelihood conditioned upon
them, p(y|X ) = N (y|0,Ky), where X = (x1, . . . ,xn)

1We adopt the common convention of writing N (x|µ, σ)
for the probability density at x of the Gaussian random
variable with mean µ and variance σ.

2Square brackets with subscripts denote elements of ma-
trices and vectors, and a colon subscript denotes an entire
row or column of a matrix.
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and Kyy = Kxx + σ2
nI is the covariance matrix for y.

This can be computed using the result that

log (p(y|X )) ∝ −y⊤K−1
yy y − log |Kyy| + c, (4)

where c is a term independent of the hyper-parameters.
Even when one neglects the cost of choosing the hyper-
parameters however, it typically costs O(n) and O(n2)
time to evaluate the posterior mean and variance re-
spectively, after an initial setup cost of O(n3).

3. Sparse Multiscale Gaussian Process

Regression

In this section we – loosely speaking – derive the likeli-
hood of a mixture of Gaussians with arbitrary diagonal
covariance matrices, under a g.p. prior with a covari-
ance function that is also a Gaussian with arbitrary di-
agonal covariance matrix. Let u be drawn from G(k).
As we mentioned previously, this means that the vec-
tor of joint evaluations at an arbitrary ordered set of
points X = (x1, . . . ,xn) is a random variable, call it
uX , distributed according to

puX
(u) = N (u|0,Kxx) . (5)

Hence by definition

puX
(
∑m

i=1ciui)

=
∣

∣2πK−1
xx

∣

∣

− 1
2 exp



−
1

2

m
∑

i,j=1

cicju
⊤
i K−1

xx uj



 ,

where |·| denotes the matrix determinant. Note that
this is simply the probability density function (p.d.f.)
of uX where we have set the argument to be

∑m

i=1 ciui,
for some ci ∈ R. We have done this because later
we will wish to determine the likelihood of a function
expressed as a summation of fixed basis functions. To
this end we now consider an infinite limit of the above
case. Taking the limit n → ∞ of uniformly distributed
points3 xi leads to the following p.d.f. for G(k),

pG(k)(
∑m

i=1ciui)

=
∣

∣2πk−1
∣

∣

− 1
2 exp

(

−
1

2

m
∑

i,j=1

cicjΨk(ui, uj)

)

, (6)

where

Ψk(ui, uj) ,

∫ ∫

k−1(x,y)ui(x)uj(y) dx dy. (7)

We will discuss the factor of
∣

∣2πk−1
∣

∣

− 1
2 shortly. Note

that in the previous case of finite n, if we let u = Kxxα

3Although any non-vanishing distribution leads to the
same result.

and assume that Kxx is invertible, then α = K−1
xx u.

Following this finite analogy, by k−1 we now intend
a sloppy notation for the function which, for u =
∫

α(x)k(x, ·) dx, satisfies
∫

u(x)k−1(x, ·) dx = α(·).
Hence if we define

Mk : α 7→ Mkα =

∫

α(x)k(x, ·) dx,

then k−1 is by definition the Green’s function (Roach,
1970) of Mk, as it satisfies

∫

(

Mkα
)

(x)k−1(x, ·) dx = α(·). (8)

Let us now consider the covariance function given by
k(x,y) = cg(x,y,σ), where c > 0, σ > 0 ∈ R

d and
g is a normalised Gaussian on R

d × R
d with diagonal

covariance matrix, that is4

g(x,y,σ) , |2πdiag (σ)|−
1
2 exp

(

−
1

2

d
∑

i=1

([x − y]i)
2

[σ]i

)

.

(9)

If we assume furthermore that our function is an arbi-
trary mixture of such Gaussians, so that

ui(x) = g(x,vi,σi), (10)

then the well known integral (for the convolution of
two Gaussians)

∫

g(x,vi,σi)g(x,vj ,σj) dx = g(vi,vj ,σi + σj),
(11)

leads to
(

1

c
Mcg(·,·,σ)g(·,vi,σi − σ)

)

(x) = g(x,vi,σi) = ui(x).
(12)

As the covariance function and the basis functions are
all Gaussian we can obtain in closed form

Ψk(ui, uj)
(7,10,12)

=

∫ ∫

k−1(x,y)g(x,vi,σi)

·

(

1

c
Mcg(·,·,σ)g(·,vj ,σj − σ)

)

(y) dx dy

(8)
=

1

c

∫

g(x,vi,σi)g(x,vj ,σj − σ) dx

(11)
=

1

c
g(vi,vj ,σi + σj − σ).

4We use diag in a sloppy fashion with two meanings —
for a ∈ R

n, diag(a) ∈ R
n×n is a diagonal matrix satisfying

[diag(a)]
ii

= [a]
i
. But for A ∈ R

n×n, diag(A) ∈ R
n is a

column vector with [diag(A)]
i
= [A]

ii
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For clarity we have noted above each equals sign the
number of the equation which implies the correspond-
ing logical step. The following expression summarises
the main idea of the present section

pG(cg(·,·,σ))

( m
∑

i=1

cig(·,vi,σi)

)

∝ exp

(

−
1

2

m
∑

i,j=1

1

c
cicjg(vi,vj ,σi + σj − σ)

)

. (13)

We give only an unnormalised form by neglecting the

factor
∣

∣2πk−1
∣

∣

− 1
2 in (6). The neglected factor is equal

to the inverse of the integral of the right hand side
of the above expression with respect to all functions
∑m

i=1 cig(·,vi,σi). We need not concern ourselves
with choosing a measure with respect to which this
integral is finite, due to the fact that, since we will
be working only with ratios of the above likelihood
(i.e. for maximum a posteriori (m.a.p.) estimation and
marginal likelihood maximisation), we need only the
unnormalised form. Note that this peculiarity is not
particular to our proposed sparse approximation to the
g.p., but is a property of g.p.’s in general.

Interpretation We now make two remarks regard-
ing the expression (13). i) If σ1 = σ2 = · · · = σn = σ

and we reparameterise ci = cc′i then it simplifies to (5).

ii) Let c = 1 and h(x) = exp
(

− 1
2x⊤diag (σ1)

−1
x
)

,

an unnormalised Gaussian. Using (9) and (13) we can
derive the log-likelihood of h under the g.p. prior,

log
(

pG(g(·,·,σ))

(

h(·)
)

)

∝ −

√

|diag (σ1)|

|diag (2σ1 − σ)|
. (14)

Simple analysis of this expression shows that the most
likely such function h is that with σ1 = σ. From this
extremal point, as any component of σ1 increases, the
log likelihood of h decreases without bound. Similarly
decreasing any component of σ1 also decreases the log
likelihood, and as any component of σ1 approaches
half the value of the corresponding component of σ,
then the log likelihood decreases without bound. To
be more precise, we have for all j = 1, 2, . . . , d that

lim
[σ1]j→( 1

2
[σ]

j)
+

log
(

pG(g(·,·,σ))

(

h(·)
)

)

= −∞.

An interesting consequence of the second remark is
that, roughly speaking, it is not possible to recover a
Gaussian function using a g.p. with Gaussian covari-
ance, if the covariance function is more than twice as
broad as the function to be recovered. Although this
may at first appear to contradict proven consistency

results for the Gaussian covariance function (for ex-
ample (Steinwart, 2002)), this is not the case. On the
contrary, such results hold only for compact domains,
and our analysis is for R

d.

An r.k.h.s. Analogy We note that (13) has a direct
analogy in the theory of r.k.h.s.’s, as made clear by the
following lemma. The lemma follows from (13) and the
well understood relationship between every g.p. and
the corresponding r.k.h.s. of functions.

Lemma 3.1. Let H be the r.k.h.s. with reproducing

kernel g(·, ·,σ). If the conditions σi > 1
2σ and σj >

1
2σ are satisfied component-wise, then

〈g(·,vi,σi), g(·,vj ,σj)〉H= g(vi,vj ,σi +σj −σ).
(15)

If either condition is not satisfied, then the correspond-

ing function on the left hand side is not in H.

Naturally this can also be proven directly, but doing
so for the general case is more involved and we omit
the details due to space limitations.5 However, by
assuming that the conditions σi > σ and σj > σ

are satisfied component-wise, then it is straightfor-
ward to obtain the main result. The basic idea is
as follows. Using (11) we substitute g(·,vp,σp) =
∫

g(·,xp,σ)g(xp,vp,σp − σ) dxp for p = i, j into
the l.h.s. of (15). By linearity we can write the
two integrals outside the inner product. Next we
use the r.k.h.s. reproducing property — the fact that
〈f(·), g(·,x,σ)〉H = f(x),∀f ∈ H,x ∈ R

d — to eval-
uate the inner product. Using (11) we integrate to
obtain the r.h.s. of (15).

4. Inference with the Sparse Model

4.1. A Simple Approach

In the previous section we derived the g.p. likelihood
over a certain restricted function space. This likeli-
hood defines a distribution over functions of the form
∑m

i=1 cig(·,vi,σi) where g as given previously is deter-
ministic and the ci are, by inspection of (13), normally
distributed according to

c ∼ N
(

0, U−1
Ψ

)

, (16)

where [UΨ]i,j = Ψk(ui, uj). Let us write U =
{u1, . . . , um} (which we refer to as the basis) and re-
fer to the random process thus defined as GU (k). This
new random process is equivalent to a full g.p. with

5For ICML reviewing, we can provide proof on request.
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covariance function of rank at most m given by

Ef∼GU (k) [f(x)f(z)] = E
c∼N(0,U

−1

Ψ )

[

(

u⊤
vxc
) (

u⊤
vzc
)⊤
]

= u⊤
vxU−1

Ψ uvz, (17)

where [uvx]i = g(x,vi,σi) and [uvz]i = g(z,vi,σi).

As an aside, note that if we choose as the ba-
sis U = {g(·,x,σ), g(·,z,σ)}, then it is easy to
verify using (17) that Ef∼GU (g(·,·,σ)) [f(x)f(z)] =
Ef∼G(k) [f(x)f(z)]. This is analogous to a special case
of the representer theorem from the theory of r.k.h.s.’s,
and agrees with the interpretation that (16) is such
that GU (k) approximates G(k) well in some sense, for
the given basis U .

Returning to the main thread, the new posterior can
be derived as it was at the end of Section 2 for the
exact g.p., but using the new covariance function (17).
Hence after some algebra we have from (2) and (3)
that, conditioned again upon the hyper-parameters,
the latent function u∗ = u(x∗) at an arbitrary test
point is distributed according to pu∼GU (k)(u∗|x∗,S) =
N (u∗|µ∗, σ

2
∗), where

µ∗ = (Uvxy)
⊤ (

UvxU⊤
vx + σ2

nUΨ

)−1
uv∗, (18)

σ2
∗ = σ2

nu⊤
v∗

(

UvxU⊤
vx + σ2

nUΨ

)−1
uv∗, (19)

and we have defined [Uvx]i,j = g(xj ,vi,σi), etc. Note
that these expressions can be evaluated in O(m) and
O(m2) time respectively, after an initial setup or train-
ing cost of O(m2n). This is the usual improvement
over the full g.p. obtained by such sparse approxima-
tion schemes. It turns out however that by employ-
ing an idea introduced by Snelson and Ghahramani
(2006), we can retain these computational advantages
while switching to a different model that is closer to
the full g.p.

4.2. Inference with Improved Variance

A fair criticism of the previous model is that the pre-
dictive variance approaches zero far away from the ba-
sis function centres vi, as can be seen from (19). It
turns out that this is particularly problematic to gra-
dient based methods for choosing the basis (the vi and
σi) by maximising the marginal likelihood (Snelson &
Ghahramani, 2006). An effective but still computa-
tionally attractive way of healing the model is to switch
to a different g.p. — which we denote G̃U (k) — whose
covariance function satisfies

EG̃U (k) [f(x)f(z)] = δx,zk(x,z) + δx,zu⊤
vxU−1

Ψ uvz,

(20)

where δa,b is the Kronecker delta function and δa,b =
1 − δa,b. Note that if x = z then the covariance is
that of the original g.p. G(k), otherwise it is that of
GU (k). Unlike (17), the prior variance in this case is
the same as that of the full g.p., even though in general
the covariance is not. Once again the posterior can be
found as before by replacing the covariance function
in (2) and (3) with the right hand side of (20). In
this case we obtain after some algebra the expression
pu∼G̃U (k)(u∗|x∗,S) = N (u∗|µ∗, σ

2
∗), where

µ∗ = u⊤
v∗Q

−1Uvx

(

Λ + σ2
nI
)−1

y, (21)

σ2
∗ = k(x∗,x∗) − u⊤

v∗

(

U−1
Ψ − Q−1

)

uv∗, (22)

Λ = diag (λ), and

[λ]i = k(vi,vi) − [Uvv]
⊤

:,i U−1
Ψ [Uvv]:,i,

Q = UΨ + Uvx

(

Λ + σ2
nI
)−1

U⊤
vx.

To compute the marginal likelihood we can use the ex-
pression (4). Note that it can be computed efficiently
using Cholesky decompositions. In order to optimize
the marginal likelihood, we also need its gradients with
respect to the various parameters. Our derivation
of the gradients (which closely follows (Seeger et al.,
2003)) is long and tedious, and has been omitted due
to space limitations. Note that by factorising appro-
priately, all of the required gradients can be obtained
in O(m2n + mnd).

4.3. A Unifying View

We now briefly outline how the method of the previ-
ous section fits into the unifying framework of sparse
g.p.’s provided by Quiñonero-Candela and Rasmussen
(2005). Using Bayes rule and marginalising out the
training set latent variables u, we obtain the posterior

p(u∗|y) =
1

p(y)

∫

p(y|u)p(u, u∗) du.

Here we have neglected to notate conditioning on x∗

and x1, . . . ,xn, and have written p instead of the more
precise pu∼G(k). Our algorithm can be interpreted as
employing two separate approximations. The first is
conditional independence of u and u∗ given a, i.e.

p(u, u∗) =

∫

p(u, u∗|a)p(a) da

≈

∫

p(u|a)p(u∗|a)p(a) da,

where a (which is marginalised out) is taken to be

(〈u1, u〉H 〈u2, u〉H · · · 〈um, u〉H)
⊤

,
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Figure 1. Predictive distributions (mean curve with ± two standard deviations shaded). For the spgp-full and vsgp-full

algorithms, we plot the (vi, σi) ∈ R×R of the basis as crossed circles. The horizontal lines denote the resulting σ ∈ R of
the covariance function cg(·, ·, σ).

the vector of inner products between the basis func-
tions ui and the latent function u, in the r.k.h.s. H
associated with k(·, ·). The second approximation is

p(u|a) = N
(

UxvU−1
Ψ v,Kxx − UxvU

−1
Ψ U⊤

xv

)

≈ N
(

UxvU−1
Ψ v,diag′

(

Kxx − UxvU
−1
Ψ U⊤

xv

))

.

where diag′(A) is a diagonal matrix matching A on
the diagonal, and [Kxv]i,j = k(xi,vj), etc. Note that
the first line can be shown with some algebra, whereas
the second is an approximation. One can show that
this leads to the result of Section 4.2, but we omit the
details for brevity. Of the algorithms considered in
(Quiñonero-Candela & Rasmussen, 2005), ours is clos-
est to that of Snelson and Ghahramani (2006), however
there the basis functions take the form ui = k(vi, ·),
which has two implications. Firstly, a simplifies to

(u(v1) u(v2) · · · u(vm))
⊤

,

the vector of the values of u at v1, . . . ,vm. Secondly,
UΨ and Uxv simplify to Kvv and Kxv, respectively.

5. Experiments

Our main goal is to demonstrate the value of being
able to vary the σi individually. Note that the chief
advantage of our method is in producing highly sparse
solutions, and the results represent the state of the
art in this respect. As such, and since the prediction
cost is O(md), we analyse the predictive performance
of the model as a function of the number of basis
functions m. Note that neither our method nor the
most closely related method of Snelson and Ghahra-
mani (2006) are particularly competitive in terms of
training time. Nonetheless, there is a demand for algo-
rithms which sacrifice training speed for testing speed,
such as real-time vision and control systems, and web
services in which the number of queries is large.

Let us clarify the terminology we use to refer to
the various algorithms under comparison. Our
new method is the variable sigma Gaussian process
(v.s.g.p.). The vsgp-full variant consists of optimising
the marginal likelihood with respect to the m basis
centers vi ∈ R

d and length scales σi ∈ R
d of our ba-

sis functions ui = g(·,vi,σi) where g is defined in (9).
Also optimised are the following hyper parameters —
the noise variance σn ∈ R of (1), and the parameters
c ∈ R and σ ∈ R

d of our original covariance function
cg(·, ·,σ). The vsgp-basis variant is identical to vsgp-

full except that σn, c and σ are determined by opti-
mising the marginal likelihood of a full g.p. trained
on a subset of the training data, and then held fixed
while the σi and vi are optimised as before. Both
v.s.g.p. variants use the G̃U (k) probabilistic model of
Section 4.2, where k = cg(·, ·,σ). For the optimisation
of the sparse pseudo-input Gaussian process (s.p.g.p.)
and v.s.g.p. methods we used a standard conjugate
gradient type optimiser.6

spgp-full and spgp-basis correspond to the work of
Snelson and Ghahramani (2006), and are identical
to their v.s.g.p. counterparts except that — as with
all sparse g.p. methods prior to the present work —
they are forced to satisfy the constraints σi = σ, i =
1 . . . m. To initialise the marginal likelihood optimisa-
tion we take the vi to be a k-means clustering of the
training data. The other parameters are always ini-
tialised to the same sensible starting values, which is
reasonable due to the preprocessing we employ (which
is identical to that of (Seeger et al., 2003)) in order to
standardise the data sets.

Figure 1 demonstrates the basic idea on a one dimen-
sional toy problem. Using m = 4 basis functions is not

6Carl Rasmussen’s minimize.m, which is freely available
from http://www.kyb.mpg.de/~carl.
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(b) kin-40k test error
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Figure 2. Plots (a) and (b) depict the test error as a function of basis size m. In (c) we plot against m the deviation of
the σi from σ, measured by the mean squared difference (see the text), for the kin-40k data set.

enough for spgp-full to infer a posterior similar to that
of the full g.p. trained on the depicted n = 200 train-
ing points. The v.s.g.p. achieves a posterior closer to
that of the full g.p. by employing — in comparison to
the full g.p. — larger σi’s and a smaller σ. This leads
to an effective covariance function — that of G̃U (k) as
given by (17) — which better matches that of the full
g.p. depicted in Figure 1 (c). In addition to merely ob-
serving the similarity between Figures 1 (b) and (c),
we verified this last statement directly by visualising
EG̃U (k) [f(x)f(z)] of (20) as a function of x and z, but
we omit the plot due to space limitations.

Figure 2 shows our experiments which, as in (Seeger
et al., 2003) and (Snelson & Ghahramani, 2006), were
performed on the pumadyn-32nm and kin-40k data
sets.7Optimising the v.s.g.p. methods from a random
initialisation tended to lead to inferior local optima,
so we used the s.p.g.p. to find a starting point for the
optimisation. This is possible because both methods
optimise the same criteria, while the s.p.g.p. merely
searches a subset of the space permitted by the v.s.g.p.
framework. To ensure a fair comparison, we optimised
the s.p.g.p. for 4000 iterations, whereas for the v.s.g.p.
we optimised first the s.p.g.p. for 2000 iterations (i.e.
fixing σi = σ, i = 1 . . . m), took the result as a starting
point, and optimised the v.s.g.p. for a further 2000
iterations (with the σi unconstrained).

We have also reproduced with kind permission the re-
sults of Seeger et al. (Seeger et al., 2003), and hence
have used exactly the experimental methodology de-
scribed therein. The results we reproduce are from the
info-gain and smo-bart methods. info-gain is their

7kin-40k : 10000 training, 30000 test, 9 attributes, see
www.igi.tugraz.at/aschwaig/data.html.
pumadyn-32nm: 7168 training, 1024 test, 33 attributes,
see www.cs.toronto/delve.

own method which is extremely cheap to train for
a given set of hyper parameters. The method uses
greedy subset selection based on a criteria which can
be evaluated efficiently. smo-bart is similar but is
based on a criteria which is more expensive to compute
(Smola & Bartlett, 2000). We also show the result of
training a full g.p. on a subset of the data of size 2000
and 1024 for kin-40k and pumadyn-32nm, respectively.

Neither info-gain nor smo-bart estimate the hyper-
parameters, but rather fix them to the values deter-
mined by optimising the marginal likelihood of the full
g.p. Hence they are most directly comparable to spgp-

basis and vsgp-basis. However, spgp-full and vsgp-full

correspond to the more difficult task of estimating the
hyper parameters at the same time as the basis.

For pumadyn-32nm we do not plot spgp-basis and
vsgp-basis as the results are practically identical to
spgp-full and vsgp-full. This differs from (Snelson
& Ghahramani, 2006), where local minima problems
with spgp-full on the pumadyn-32nm data set are re-
ported. It is unclear why our experiments did not suf-
fer in this way — possible explanations are the choice
of initial starting point, as well as the choice of op-
timisation algorithm. The results of the s.p.g.p. and
v.s.g.p. methods on the pumadyn-32nm data set very
similar, but both outperform the info-gain and smo-

bart approaches.

The kin-40k results are rather different. While the
σi deviated little from σ on the pumadyn-32nm data
set, this was not the case for kin-40k, particularly
for small m, as seen in Figure 2 (c) where we plot
1

md

∑m

i=1

∑d

j=1([σi − σ]j)
2. Our results are in agree-

ment with those of (Snelson & Ghahramani, 2006)
— our vsgp-full outperforms spgp-full for small m,
which in turn outperforms both info-gain and smo-

bart. However for large m both spgp-full and vsgp-full
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tend to over-fit. This is to be expected due to the
use of marginal likelihood optimisation, as the choice
of basis U is equivalent to the choice of the order of
md hyper parameters for the covariance function of
G̃U (k). Happily, and somewhat surprisingly, the vsgp-

full method tends not to over-fit more than the spgp-

full, in spite of its having roughly twice as many basis
parameters. Neither vsgp-basis nor spgp-basis suffered
from over-fitting however, and while they both out-
perform info-gain and smo-bart, our vsgp-basis clearly
demonstrates the advantage of our new s.p.g.p. frame-
work by consistently outperforming spgp-basis.

Finally, to emphasise the applicability of our idea to
other kernel algorithms, we provide an accompanying
video which visualises the optimisation of an s.v.m.
using multiscale gaussian basis functions.

6. Conclusions

Sparse g.p. regression is an important topic which has
received a lot of attention in recent years. Previous
methods have based their computations on subsets of
the data or pseudo input points. To relate this to our
method, this is analogous to basing the computations
on a set of basis functions of the form k(vi, ·) where k

is the covariance function and the vi are for example
the pseudo input points. We have generalised this for
the case of Gaussian covariance function, by basing
our computations on a set of Gaussian basis functions
whose bandwidth parameters may vary independently.

This provides a new avenue for approximations, appli-
cable to all kernel based algorithms, including g.p.’s
and the s.v.m., for example. To demonstrate the util-
ity of this new degree of freedom, we have constructed
sparse g.p. and k.r.r. algorithms which outperform pre-
vious methods, particularly for very sparse solutions.
As such, our approach yields state of the art perfor-
mance as a function of prediction time.
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Quiñonero-Candela, J., & Rasmussen, C. E. (2005). A
unifying view of sparse approximate gaussian pro-
cess regression. Journal of Machine Learning Re-

search, 6, 1935–1959.

Roach, G. F. (1970). Green’s functions. Cambridge,
UK: Cambridge University Press.

Seeger, M., Williams, C., & Lawrence, N. D. (2003).
Fast forward selection to speed up sparse gaussian
process regression. In C. M. Bishop and B. J. Frey
(Eds.), Workshop on ai and statistics 9. Society for
Artificial Intelligence and Statistics.

Smola, A. J., & Bartlett, P. L. (2000). Sparse greedy
gaussian process regression. In T. K. Leen, T. G.
Dietterich and V. Tresp (Eds.), Advances in neural

information processing systems 13, 619–625. Cam-
bridge, MA: MIT Press.

Snelson, E., & Ghahramani, Z. (2006). Sparse gaus-
sian processes using pseudo-inputs. In Y. Weiss,
B. Schölkopf and J. Platt (Eds.), Advances in neu-

ral information processing systems 18, 1257–1264.
Cambridge, MA: MIT Press.

Steinwart, I. (2002). On the influence of the kernel on
the consistency of support vector machines. Journal

of Machine Learning Research, 2, 67–93.

Walder, C., Schölkopf, B., & Chapelle, O. (2006). Im-
plicit surface modelling with a globally regularised
basis of compact support. Proc. EUROGRAPHICS,
25, 635–644.


