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Abstract

Cost curves have recently been introduced as
an alternative or complement to ROC curves
in order to visualize binary classifiers perfor-
mance. Of importance to both cost and ROC
curves is the computation of confidence inter-
vals along with the curves themselves so that
the reliability of a classifier’s performance
can be assessed. Computing confidence inter-
vals for the difference in performance between
two classifiers allows the determination of
whether one classifier performs significantly
better than another. A simple procedure to
obtain confidence intervals for costs or the
difference between two costs, under various
operating conditions, is to perform bootstrap
resampling of the test set. In this paper, we
derive exact bootstrap distributions for these
values and use these dstributions to obtain
confidence intervals, under various operating
conditions. Performances of these confidence
intervals are measured in terms of coverage
accuracies. Simulations show excellent re-
sults.

1. Introduction

A cost curve (Drummond & Holte, 2000; Drummond
& Holte, 2006) is a plot of a classifier’s expected cost
as a function of operating conditions, i.e. misclassifi-
cation costs and class probabilities. Performance as-
sessment in terms of expected cost is paramount but
cannot be visualized through ROC analysis although
knowledge of the distribution of a classifier’s total mis-
classification error cost is often among the enduser’s
interests.

Cost curve analysis can be enhanced if dispersion mea-
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sures of the curve are provided along with the curve
itself, thereby allowing the enduser to assess the re-
liability of the estimated performance of the classi-
fier considered for implementation. In order to obtain
confidence intervals from a single test set, resampling
methods such as the bootstrap (Efron & Tibshirani,
1993) technique can be used: from the test set, a cer-
tain number of samples are drawn with remplacement
and from these samples, a distribution of the cost can
be obtained. In certain cases, the bootstrap technique
lends itself to analytic derivations for the limit case
where the number of samples tends to infinity. Distri-
butions thus obtained are referred to as exact bootstrap
distributions. The purpose of this paper is to derive
exact bootstrap distributions for a classifier’s total cost
of misclassification errors as well as the difference be-
tween two classifiers’ total costs, for varying operating
conditions.

Except for Drummond & Holte (2006), little attention
has been given to developing and evaluating the per-
formance of confidence intervals for cost curves. ROC
curves have received much more attention. Arguably,
the recency of cost curves explains in part this situa-
tion. Recent literature on the derivations of confidence
intervals for ROC curves can be segmented in three
categories: parametric, semi-parametric or empirical.
Semi-parametric methods mainly refer to kernel-based
methods (Hall & Hyndman, 2003; Hall et al., 2004;
Lloyds, 1998; Lloyds & Wong, 1999). Bootstrap re-
sampling has been used for ROC curves as an empiri-
cal method but to date, exact bootstrap distributions
for the ROC curve have not been presented.

A technical difficulty arises from the fact that, when
sampling from the entire test set, a procedure we shall
refer to as full sampling, relative proportions of classes
will vary from one sample to another. Mathemati-
cal derivations of exact bootstrap distributions, in the
context of full sampling, are thus more complicated.
In this paper, we first use a procedure referred to as
stratified sampling according to which proportions of
positive and negative instances of each bootstrap sam-
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ple are fixed as equal to those of the original test set.
Here, an instance is an element of the test set. In-
stances of the class for which the event has (not) taken
place are called positive (negative). For example, for
a credit card fraud detection application, fraudulous
transactions would be labelled as positive whereas le-
gitimate transactions would be labelled as negative.
Within the stratified sampling framework, each sample
is obtained from the combination of two independent
bootstrap samples: one drawn from the set of positive
instances and the other drawn from the set of neg-
ative instances. This procedure has previously been
used in the context of ROC (Bandos, 2005) as well
as cost curves (Drummond & Holte, 2006). After ob-
taining results under this simplified stratified sampling
approach, we derive exact bootstrap distributions for
the full sampling approach.

From the user’s perspective, the two sampling pro-
cedures, stratified and full, provide different informa-
tion so that the difference between the two approaches
reaches beyond mere mathematical derivations. Ac-
cording to stratified sampling, the user is provided
with a cost distribution conditional on the operat-
ing conditions that will eventually prevail once the
model is implemented. We refer to these as the de-
ployment conditions. This corresponds to the view
of Drummond & Holte (2006) who argue in favor of
plotting cost curves in terms of all possible values of
the unknown future deployment conditions. Within
the stratified sampling approach, cost dispersion mea-
sures obtained for a specific value of the deployment
conditions make no provision for uncertainty around
expected deployment conditions. On the other hand,
according to the full sampling approach, class pro-
portions are implicitly assumed to be binomially dis-
tributed around those of the test set so that cost dis-
persion measures incorporate uncertainty around class
proportions. Since the two approaches provide differ-
ent information that may both be of interest, both are
treated in this paper.

The rest of the paper is as follows: in section 2,
we briefly review the main aspects of ROC and cost
curves. Then, mathematical derivations are presented
in section 3 for stratified sampling and in section 4 for
full sampling. In section 5, we perform simulations
and measure coverage accuracies of the confidence in-
tervals. Limitations of the proposed approach are dis-
cussed in section 6. Finally, we conclude in section
7.

2. ROC and cost curves

An ROC curve is a plot of the probability of correctly
identifying a positive instance (a true positive) against
the probability of mistakenly identifying a negative in-
stance as positive (a false positive), for various thresh-
old values. Fawcett (2004) provides an excellent in-
troduction to ROC curves along with descriptions of
the essential elements of ROC graph analysis. Classi-
fier performance assessment in terms of expected total
error cost cannot be done using ROC curves and for
this reason (and others (Drummond & Holte, 2006)),
cost curves have been introduced as an alternative (or
a complement) to ROC curves.

The main objective of cost curves is to visualize clas-
sifier performance in terms of expected cost rather
than through a tradeoff between misclassification error
probabilities. Expected cost is plotted against operat-
ing conditions where, as mentionned above, operating
conditions include two factors: class probabilities and
misclassification costs. Once these values are fixed, all
possibly attainable true and false positive rates pairs
are considered. Given class probabilities, misclassifi-
cation costs, and true and false positive rates, a cost
is obtained. The pair that minimizes the cost is se-
lected. It is assumed that given certain operating con-
ditions, the enduser would select the cost minimizing
pair and set the classifier’s threshold accordingly. In
order to obtain a cost curve, this optimization process
is repeated for all possible operating conditions values.
As shown below, a set of operating conditions can be
summarized through a single normalized scalar value
ranging between 0 and 1. Figure 1 illustrates this pro-
cess.

Cost curves are obtained assuming the enduser selects
the threshold that minimizes expected cost, given op-
erating conditions, based on the test set. One approach
to obtain cost distributions is to draw bootstrap sam-
ples from the test set, obtain a cost curve for each of
the samples and derive a distribution for the cost from
these cost curves. Now consider a specific set of values
for the operating conditions. Each of the samples will
lead a possibly different optimal threshold for this set
of operating conditions. This can be viewed in Figure
1 by comparing the left- and right-hand columns.

Thus, averaging cost curves (fixed operating condi-
tions but varying thresholds) in order to obtain an
estimate of the expected cost would correspond to the
enduser being able to select the optimal thresholds, de-
pending on the actually observed sample of instances.
In other words, the enduser would be required to have
knowledge of the test set before deciding on a threshold
value, something that can’t be done in practice. Ob-
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Figure 1. Derivation of ROC and cost curves for two classi-
fiers with relatively low (left) and high (right) discrimina-
tion power. Top: score distributions for negative (solid)
and positive (dashed) instances. Three colored vertical
lines represent possible thresholds, from low (red) to high
(blue). Middle: ROC curves associated to top row distri-
butions. Three true and false positive pairs are identified
with colored dots. Bottom: each dot of the middle row
plotted in ROC space is uniquely associated to a line in
cost curve space. Given specific operating conditions, the
cost minimizing threshold may vary from one curve to an-
other. Here, with w = 0.33, the optimal threshold is the
highest (blue) of the three considered value on the left-
hand side. On the right-hand side, it is the second largest
threshold value (green) that leads to the lowest expected
cost.

viously, thresholds must somehow be selected prior to
test set cost measurements. This can be done through
the standard machine learning process of splitting the
data in three sets: training, validation and test. In
our simulations, we assume the user chooses the opti-
mal theoretical thresholds for all operating conditions,
thus implicitely assuming an infinite sized validation
set. The impact of this assumption is discussed later,
in section 6. Our approach can therefore be consid-
ered as a form of threshold averaging of the costs. But
since both operating conditions (abscissa values) and
thresholds are fixed for each computed distribution,
then the approach could be considered as vertical av-
eraging as well. We now turn to more formal deriva-
tions of the cost curves and associated exact bootstrap
distributions.

3. Stratified sampling

Consider a test set consisting of n instances from which
stratified bootstrap samples are drawn. In this paper,
we shall assume bootstrap samples are of the same size
as the test set itself, a common procedure. Let n+ and
n− be the numbers of positive and negative instances
in the test set. According to the stratified bootstrap
procedure and since we assume sample size equals test
set size, the numbers of sampled positive and negative
instances are fixed for all samples and also equal to
n+ and n−, respectively. Let n+

t denote the number
of instances, among the n+ positive instances of the
test set, with score greater or equal to the threshold
t = t(w) associated to operating conditions w, where
w will be defined shortly. The corresponding value for
a set of sampled positive instances is noted N+

t and
follows binomial distribution with parameters n+

t /n+

and n+ which we note as N+
t ∼ Bin(n+

t /n+, n+). The
random variable for the true positive rate, at threshold
t, is denoted TP+

t = N+
t /n+. Similarly for negative

instances, n−t refers to the number of instances with
score greater or equal to t among the n− negative in-
stances of the test set, N−

t is the random variable for
the corresponding number of sampled instances and
FP−t = N−

t /n− is the false positive rate, at threshold
t, with N−

t ∼ Bin(n−t /n−, n−). Note that, according
to the stratified sampling procedure, samples from pos-
itive and negative instances are drawn independently
so that TP+

t and FP−t are independent as well.

Let us now formalize the above mentionned operat-
ing conditions and define w. Let p+ = n+/n and
p− = n−/n represent class probabilities for positive
and negative instances, respectively. Misclassification
costs are noted c+/− and c−/+ for false positive and
false negative errors, respectively. Total cost is there-
fore given by the following:

CT
t = p+c−/+(1 − TP+

t ) + p−c+/−FP−t . (1)

Drummond & Holte (2006) divide the total cost by its
maximum possible value, in order to obtain a normal-
ized cost with maximum value of one. This maximum
total cost value is reached when 1− TP+

t = FP−t = 1
and the total cost is then equal to p+c−/+ + p−c+/−.
Defining w as

w =
p+ · c−/+

p+ · c−/+ + p− · c+/−
, (2)

the normalized cost is given by

CN
t = w(1 − TP+

t ) + (1 − w)FP−t (3)

with w ∈ [0, 1]. As mentionned above, true and false
positive rates are independent when stratified sam-
pling is used. Thus, the expected value and variance
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of CN
t follow as:

E[CN
t ] = w(1 − n+

t /n+) + (1 − w)n−t /n−. (4)
V [CN

t ] = w2n+
t /n+(1 − n+

t /n+)
+(1 − w)2n−t /n−(1 − n−t /n−). (5)

We use these expectation and variance of the distribu-
tion of CN

t to fit a gaussian distribution from which
confidence intervals are easily obtained.

Now, in order to assess the statistical significance of
the difference in performance of two classifiers, we need
to obtain the distribution of the difference in their nor-
malized costs:

∆CN
t1,t2 = CN

t2 − CN
t1

= w(TP+
t1 − TP+

t2 )

+(1 − w)(FP−t2 − FP−t1 ) (6)

where we use subscripts 1 and 2 to differentiate values
obtained for the two classifiers. The values of CN

t2 and
CN

t1 cannot be assumed independent since it is possi-
ble that the scores assigned by two different classifiers
are correlated: for example, obvious fraudulous trans-
actions will likely obtain high scores on all classifiers.
Also note that only instances that are falsely labelled
by one and only one of the two classifiers will affect the
difference in costs. Errors made by both classifiers will
offset each other when computing cost differences. Let
n+

t1 represent the number of positive test set instances
labelled as positive by the first classifier and negative
by the second classifier, given operating conditions w.
Similarly, let n+

t2 represent the number of positive test
set instances labelled as positive by classifier 2 and neg-
ative by classifier 1. Note that thresholds t1 = t1(w)
and t2 = t2(w) associated to operating conditions w
may differ from one classifier to the other since score
distributions and scales may vary from one classifier
to the other. Values n−t1 and n−t2 are defined similarly
for negative instances, given the same operating con-
ditions value w.

Let N+
t1 , N+

t2 , N−
t1 , and N−

t2 be the associated random
variables for the number of instances in a bootstrap
sample. Values N+

t1 and N+
t2 jointly follow a multino-

mial distribution. This also applies to N−
t1 and N−

t2 .
Accordingly, moments of ∆CN

t1,t2 are easily obtained:

E[∆CN
t1,t2 ] = w

(
n+

t1 − n+
t2

n+

)

+ (1 − w)

(
n−t2 − n−t1

n−

)
(7)

V [∆CN
t1,t2 ] = w2

n+
t1 + n+

t2 −
(n+

t1
−n+

t2
)2

n+

(n+)2



+(1 − w)2

n−t1 + n−t2 −
(n−t1

−n−t2
)2

n−

(n−)2

 . (8)

Let us now evaluate the computational time required
to obtain confidence intervals for the performance of a
single classifier and for the difference between the per-
formances of two classifiers. Here, we assume the num-
ber of different operating conditions considered, i.e.
the number of different values for w is proportional to
n. Also, as explained above, we assume the thresholds
associated to each of these operating conditions have
previously been determined through a validation pro-
cess. For the case of a single classifier performance, we
first need to sort instances with respect to their score,
which requires time O(n lnn). Then, values of n+

t and
n−t are easily obtained in linear time. There remains to
compute expectations and variances, using equations
(4) and (5), and derive confidence intervals using these
values. This is realized in constant time for each value
of w, thus overall linear time. Globally, the entire pro-
cess is therefore dominated by the sorting phase and
total computational time is O(n lnn). Confidence in-
tervals for the difference in performance between two
classifiers can be obtained in O(n lnn) computational
time as well, although less trivially. Naive solutions
lead to quadratic time but, given careful sorting pre-
processing, values n+

t1 , n
+
t2 , n

−
t1 , and n−t2 are computed

in linear time. Then, moments and confidence inter-
vals for ∆CN

t1,t2 are obtained in linear time (for all
values of w) using equations (7) and (8).

4. Full sampling

Within the framework of full sampling, the proportions
of positive and negative instances vary from one sam-
ple to another. Whereas with stratified sampling, the
number of positive and negative instances in each sam-
ple, n+ and n−, were set as equal to those of the test
set, we now consider these numbers as random vari-
ables, and accordingly use capital notation N+ and
N−. Here again, these values follow binomial distri-
butions: N+ ∼ Bin(n+/n, n). Thus, full sampling
implicitly assumes a binomial distribution for the ob-
served class proportions P+ = N+/n and P− = N−/n
but this distribution could easily be replaced.

Equation (1) still holds in the case of full sampling, but
with the difference that P+ and P− are now treated
as random variables. In the previous section the nor-
malized version of the total cost was obtained by
dividing the total cost by the largest possible cost:
p+c−/++p−c+/−, a weighted average between misclas-
sification costs c−/+ and c+/−. Since P+ and P− are
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no longer fixed, we must consider the largest possible
weighted average which simply is the maximum of the
two misclassification costs, cmax = max[c−/+, c+/−].
The case where CT

t = c−/+ is obtained when N+ = n

and TP+
t = 0. Similarly, we have CT

t = c+/− if
N− = n and FP−t = 1. Thus, for full sampling, the
normalized cost can be written as

CN
t =

N+ · c−/+ · (1 − TP+
t ) + N− · c+/− · FP−t

n · cmax
.

Then, expected normalized cost and normalized cost
variance are obtained through iterated expectations:

E[CN
t ] = EN+{E[CN

t |N+]}

=
c−/+(n+ − n+

t ) + c+/− · n−t
n · cmax

(9)

V [CN
t ] = VN+{E[CN

t |N+]} + EN+{V [CN
t |N+]}

=
c2
−/+α+

t + c2
+/−α−t + δ2

t

(n · cmax)2
(10)

where

α+
t = n+

t − (n+
t )2

n+

α−t = n−t − (n−t )2

n−

δ2
t =

(
c−/+

n+ − n+
t

n+
− c+/−

n−t
n−

)2
n+ · n−

n

Here again, equations (9) and (10) can be used to ob-
tain a fitted gaussian distribution from which confi-
dence intervals are easily derived.

Let us now turn to the difference in performance be-
tween two classifiers. In the case of full sampling, this
difference is

∆CN
t1,t2 =

c−/+(N+
t1 − N+

t2 ) + c+/−(N−
t2 − N−

t1 )
n · cmax

(11)

Again, expected normalized cost and normalized cost
variance are obtained through iterated expectations:

E[∆CN
t1,t2 ] = EN+{E[∆CN

t1,t2 |N
+]}

=
c−/+(n+

t1 − n+
t2) + c+/− · (n−t2 − n−t1)
n · cmax

(12)

V [∆CN
t1,t2 ] = VN+{E[∆CN

t1,t2 |N
+]}

+ EN+{V [∆CN
t1,t2 |N

+]}

=
c2
−/+α+

t1,t2 + c2
+/−α−t1,t2 + δ2

t1,t2

(n · cmax)2
(13)

0.0

0.2

0.4

0.6

0.8

1.0

C
ov

er
ag

e

Spread=0.75 Spread=1.50

0.2 0.4 0.6 0.8
Operating conditions

0.0

0.2

0.4

0.6

0.8

1.0

C
ov

er
ag

e

0.0 1.0

Spread=3.00

0.2 0.4 0.6 0.8
Operating conditions

0.0 1.0

Spread=5.00

Figure 2. Effect of spread between distributions on cover-
age. Stratified sampling is used. Confidence intervals are
derived for a classifier’s cost. Location (spread) parame-
ter for positive instances is set equal to 0.75 (up and left),
1.50 (up and right), 3.00 (down and left), and 5.00 (down
and right). Sample size is 1,000. Confidence intervals are
built with significance level α = 10%. Coverage propor-
tion (solid) for 1,000 simulations and target coverage of
90% (dashed) are plotted against operating conditions.

where

α+
t1,t2 = n+

t1 + n+
t2 −

(n+
t1 − n+

t2)
2

n+

α−t1,t2 = n−t1 + n−t2 −
(n−t1 − n−t2)

2

n−

δ2
t1,t2 =

(
c−/+

n+
t1 − n+

t2

n+
− c+/−

n−t2 − n−t1
n−

)2
n+ · n−

n

This completes mathematical derivations. A total of
four distributions have been obtained. For all four
distributions, computation of confidence intervals is
dominated by the need to sort instances so that com-
putational time is O(n lnn) in all cases. Note that
such time efficiency is obtained because we rely on the
gaussian fitting of the variables’ distributions. Com-
puting true exact bootstrap distributions would lead
to higher computational time orders. But as we show
in the next section, results obtained with gaussian fit-
ting are already excellent.

5. Numerical results

In this section, we conduct a series of experiments in
order to assess the performance of the confidence in-
tervals derived in sections 3 and 4. Performance is
measured in terms of coverage accuracy of confidence
intervals.

The first experiment is based on the framework used
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Figure 3. Effect of sample size on coverage. Stratified sam-
pling is used. Confidence intervals are derived for a clas-
sifier’s cost. Sample sizes of 25 (up and left), 250 (up and
right), 2,500 (down and left), and 1,000, (down and right)
are considered. Confidence intervals are built for signif-
icance level α = 10%. Location parameter for positive
instances is set to θ = 3.0. Coverage proportion (solid) for
1,000 simulations and target coverage of 90% (dashed) are
plotted against operating conditions.

by Macskassy et al. (2005) in which four methods
for obtaining pointwise confidence intervals for ROC
curves are compared: threshold averaging, vertical
averaging, kernel smoothing (Hall et al., 2004) and
Working-Hotelling bounds. Positive and negative in-
stance scores follow normal distributions but with var-
ious parameter values. We set the scale parameter to
3.00 for both positive and negative instances scores.
The location parameter θ for positive instances varies
within the set {0.75, 1.5, 3.0, 5.0} and the location pa-
rameter for negative instances is set equal to −θ. Sam-
ple size is set to 1,000, i.e. a set of 1,000 instances is
drawn from the positive instances distribution and an-
other set of 1,000 negative instances is drawn from the
negative instances distribution. The sampling proce-
dure is repeated 1,000 times, i.e. 1,000 simulations
are performed for each value of θ. We shall refer to
this experiment as the spread experiment. Confidence
intervals are obtained for a significance level of 10%.

Figure 2 provides simulation results which clearly show
that better results are obtained when score distribu-
tions of positive and negative instances have few over-
lap, i.e. for high values of θ. Breaks in coverage ac-
curacy appear as w is close to 0 or 1. This recurring
pattern is discussed in section 6.

As a second experiment, we consider the effect of sam-
ple size on coverage accuracy. This experiment is ev-
erywhere similar to the previous one except for two
modifications: (1) the location parameter not longer
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Figure 4. Coverage accuracy of confidence intervals for the
difference in performance between two classifiers. Strati-
fied sampling is used. Sample size is 1000, and significance
level is α = 10%. Location parameter for positive instances
of first classifier is set to θ = 1.0 (left) and θ = 3.0 (right).
Location parameter for the score of positive instances ac-
cording to the second classifier is θ (top), θ+2.00 (middle)
and θ+4.00 (bottom). Within each plot, correlation factor
is equal to 0.3 (dotted), 0.6 (dash-dotted) and 0.9 (solid).
Coverage proportions for 1,000 simulations and target cov-
erage of 90% (dashed) are plotted against operating con-
ditions.

varies: it is set to θ = 3.0 and (2) the sample size takes
values in {25; 250; 2, 500; 10, 000} instead of being fixed
at 1,000. We shall refer to this experiment as the size
experiment. Simulation results appear in Figure 3. As
the sample size increases, the range of operating con-
dition values with good coverage accuracy widens. For
sample sizes of 25, only a very narrow range of oper-
ating condition values lead to a coverage rate that is
on target.

Our third experiment addresses the modeling of the
difference in performance between two classifiers. The
experiment design is similar to the ones used for the
previous two experiments, i.e. the spread and size ex-
periments. Scores are distributed according to a binor-
mal distribution with scale of 3.00. Confidence inter-
vals are obtained for a significance level of α = 10%.
The location parameters are set as follows: for pos-
itive instances of the first classifier, we consider two
values: θ ∈ {1.0, 3.0}. For negative instances of both
classifiers the parameter is set equal to −θ. Finally, for
positive instances of the second classifier we consider
three values: θ, θ + 2.0 and θ + 4.0. The difference
between the location parameters of the two classifiers’
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Figure 5. Effect of spread between distributions on cover-
age. Full sampling is used. Confidence intervals are derived
for a classifier’s cost. Location parameter for positive in-
stances is set equal to 0.75 (up and left), 1.50 (up and
right), 3.00 (down and left), and 5.00 (down and right).
Sample size is 1,000. Confidence intervals are built with
significance level α = 10%. Coverage proportion (solid)
for 1,000 simulations and target coverage of 90% (dashed)
are plotted against operating conditions.

positive instances distributions, either 0.0, 2.0 or 4.0,
is referred to as the shift parameter. In order to in-
clude some form of dependency between the scores of
the two classifiers, three values of a correlation factor
are considered: ρ ∈ {0.3, 0.6, 0.9}. We shall refer to
this experiment as the difference experiment.

Results appear in Figure 4. As in the previous two
experiments, coverage accuracy breaks for very low or
high total positive rates. Comparing curves on the
left of Figure 4 with those on the right, we see the
spread parameter θ has some impact: higher values
of θ cause the range of total positive rate values with
good coverage accuracy to widen. With θ = 1.0, higher
shift parameter values lead to better coverage accuracy
whereas with θ = 3.0, the shift parameter has the op-
posite, but less pronounced, effect. The correlation
coefficient seems to have very little effect on cover-
age accuracy which is a welcome property: the perfor-
mances of the confidence intervals seem independent
of the level of correlation between the scores of two
models.

Figure 5 and 6 repeat the spread (first) and diffrence
(third) experiments described above, but with the use
of full sampling. Looking at Figure 5, it it clear that
full sampling leads to better coverage accuracy than
stratified sampling for low values of the spread param-
eter (θ = 0.75). In fact, the effect of the spread pa-
rameter seems to have reversed although performance
at θ = 5.00 is better than with θ = 3.0. Finally, Figure
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Figure 6. Coverage accuracy of confidence intervals for the
difference in performance between two classifiers. Full sam-
pling is used. Sample size is 1000, and significance level is
α = 10%. Location parameter for positive instances of
first classifier is set to θ = 1.0 (left) and θ = 3.0 (right).
Location parameter for the score of positive instances ac-
cording to the second classifier is θ (top), θ+2.00 (middle)
and θ+4.00 (bottom). Within each plot, correlation factor
is equal to 0.3 (dotted), 0.6 (dash-dotted) and 0.9 (solid).
Coverage proportions for 1,000 simulations and target cov-
erage of 90% (dashed) are plotted against operating con-
ditions.

6 indicates that both stratified and full sampling per-
form equally well for modeling the difference between
two classifiers’ performances.

6. Limitations of the approach

A first consideration is whether actually performing a
certain number of bootstrap resamplings of the test
set instances would allow us to reach coverage ac-
curacy similar to that obtained in the previous ex-
periments, using exact bootstrap distributions. Let b
be the number of empirical bootstrap samples drawn.
Computational time is dominated by the need to sort
instances, as a preprocessing, for each sample and is
thus within O(b n lnn). Obtaining confidence inter-
vals through empirical bootstrap is therefore both an
order of magnitude slower and less precise than using
the exact bootstrap approach. Obviously, coverage ac-
curacies similar to those presented here could be ob-
tained with a large number of resamples but at high
computational cost.

Another issue is the presence of breaks in coverage
accuracy for extreme values of operating conditions.
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When considering operating conditions close to 0 or 1,
optimal thresholds are likely to lie outside the range
of observed scores of the simulated test sets. For
such thresholds and simulations, variances are either
zero (equations 5,8, and 13) in which case coverage
is impossible or very close to zero (equation 10) in
which case coverage is very unlikely. Coverage accu-
racy breaks appear as the probability that the optimal
threshold is outside the range of observed score values
rises. Also, as is apparent from Figure 1, the expected
value of the cost (thus the cost difference as well) drops
to zero as operating conditions reach extreme values.

Finally, we may wonder how the assumption of opti-
mal threshold selection impacts the results presented
in this paper. Instead of assuming optimal threshold
selection, consider selecting the thresholds, for each
simulation of the previous experiments, based on a
randomly generated finite-sized validation set which
leading to suboptimal thresholds. Of course, expected
costs are, by definition, higher for suboptimal thresh-
olds than for optimal thresholds but what is of interest
here is whether we can develop reliable confidence in-
tervals for the cost, at the chosen thresholds, whether
optimal or not. Given certain operating conditions,
the selected suboptimal threshold follows a distribu-
tion centered around the optimal value so that cover-
age accuracy, given these operating conditions, is the
expected coverage accuracy where the expectation is
taken over the distribution of the suboptimal thresh-
old. This results in a smoothing of the coverage accu-
racy breaks observed in the experiments above.

7. Conclusion

In this paper, we have derived exact bootstrap dis-
tributions for the (normalized) cost of the misclassifi-
cation errors of a classifier’s decisions. We have also
derived exact bootstrap distributions for the difference
between the costs of two classifiers. The first and sec-
ond moments of these distributions have been used
to fit gaussian distributions and thus approximate the
true exact bootstrap distributions. From these approx-
imated distributions, we were able to obtain confidence
intervals for the variables of interest. Table 1 sum-
marizes these results. All confidence intervals can be
derived in O(n lnn) time.

Results obtained in this paper are excellent but limited
to a few simulations. In a few cases, severe breaks in
coverage accuracy appear when operating conditions
values close to 0 or 1. These breaks can be avoided if
cost distribution computations are limited to thresh-
olds within the range of sampled scores. Another pos-
sibility is to extrapolate score distributions beyond ob-

Sampling Variable Equations Figures
CN

t (4), (5) 2,3Stratified
∆CN

t1,t2 (7), (8) 4
CN

t (9), (10) 5Full
∆CN

t1,t2 (12), (13) 6

Table 1. Summary of the paper’s main results.

served values, an area for future work.
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