
An Empirical Evaluation of Supervised Learning in High Dimensions

Rich Caruana caruana@cs.cornell.edu

Nikos Karampatziakis nk@cs.cornell.edu

Ainur Yessenalina ainur@cs.cornell.edu

Department of Computer Science, Cornell University, Ithaca, NY 14853 USA

Abstract

In this paper we perform an empirical
evaluation of supervised learning on high-
dimensional data. We evaluate perfor-
mance on three metrics: accuracy, AUC, and
squared loss and study the effect of increas-
ing dimensionality on the performance of the
learning algorithms. Our findings are con-
sistent with previous studies for problems of
relatively low dimension, but suggest that as
dimensionality increases the relative perfor-
mance of the learning algorithms changes.
To our surprise, the method that performs
consistently well across all dimensions is ran-
dom forests, followed by neural nets, boosted
trees, and SVMs.

1. Introduction

In the last decade, the dimensionality of many machine
learning problems has increased substantially. Much
of this results from increased interest in learning from
text and images. Some of the increase in dimension-
ality, however, results from the development of tech-
niques such as SVMs and L1 regularization that are
practical and effective in high dimensions. These ad-
vances may make it unnecessary to restrict the feature
set and thus promote building and learning from data
sets that include as many features as possible. At the
same time, memory and computational power have in-
creased to support computing with large data sets.

Perhaps the best known empirical studies to exam-
ine the performance of different learning methods
are STATLOG (King et al., 1995) and (Caruana &
Niculescu-Mizil, 2006). STATLOG was a very thor-
ough study, but did not include test problems with

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

high dimensions and could not evaluate newer learn-
ing methods such as bagging, boosting, and kernel
methods. More recently, (Caruana & Niculescu-Mizil,
2006) includes a number of new learning algorithms
that emerged after the STATLOG project, but only ex-
amined performance on problems with low-to-medium
dimension. One must question if the results of either of
these studies apply to text data, biomedical data, link
analysis data etc. where many attributes are highly
correlated and there may be insufficient data to learn
complex interactions among attributes. This paper at-
tempts to address that question.

There are several limitations to the empirical study in
(Caruana & Niculescu-Mizil, 2006). First, they per-
formed all experiments using only 5000 training cases,
despite the fact that much more labeled data was avail-
able for many problems. For one of the problems
(COVTYPE) more than 500,000 labeled cases were
available. Intentionally training using far less data
than is naturally available on each problem makes the
results somewhat contrived. Second, although they
evaluated learning performance on eight performance
metrics, examination of their results shows that there
are strong correlations among the performance mea-
sures and examining this many metrics probably added
little to the empirical comparison and may have led
to a false impression of statistical confidence. Third,
and perhaps most important, all of the data sets ex-
amined had low to medium dimensionality. The aver-
age dimensionality of the 11 data sets in their study
was about 50 and the maximum dimensionality was
only 200. Many modern learning problems have orders
of magnitude higher dimensionality. Clearly learn-
ing methods can behave very differently when learning
from high-dimensional data than when learning from
low-dimensional data.

In the empirical study performed for this paper we
complement the prior work by: 1) using the natural
size training data that is available for each problem;
2) using just three important performance metrics: ac-



An Empirical Evaluation of Supervised Learning in High Dimensions

curacy, area under the ROC curve (AUC), and squared
loss; and 3) performing experiments on data with high
to very high dimensionality (750-700K dimensions).

2. Methodology

2.1. Learning Algorithms

This section summarizes the algorithms and parame-
ter settings we used. The reader should bear in mind
that some learning algorithms are more efficient at
handling large training sets and high-dimensional data
than others. For an efficient algorithm we can afford
to explore the parameter space more exhaustively than
for an algorithm that does not scale well. But that’s
not unrealistic; a practitioner may prefer an efficient
algorithm that is regarded as weak but which can be
tuned well over an algorithm that might be better but
where careful tuning would be intractable. Below we
describe the implementations and parameter settings
we used. An algorithm marked with an asterisk (e.g.
ALG∗) denotes our own custom implementation de-
signed to handle high-dimensional sparse data.

SVMs: We train linear SVMs using SVMperf

(Joachims, 2006) with error rate as the loss function.
We vary the value of C by factors of ten from 10−9

to 105. For kernel SVMs we used LaSVM, an approxi-
mate SVM solver that uses stochastic gradient descent
(Bordes et al., 2005), since traditional kernel SVM im-
plementations simply cannot handle the amounts of
data in some of our experiments. To guarantee a rea-
sonable running time we train the SVM for 30 minutes
for each parameter setting and use the gradient based
strategy for the selection of examples. We use polyno-
mial kernels of degree 2 and 3 and RBF kernels with
width {0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 2}. We vary
the value of C by factors of ten from 10−7 to 105.

ANN∗: We train neural nets with gradient descent
backpropagation, early stopping and no momentum
(cf. section 5). We vary the number of hidden units
{8, 16, 32} and learning rate {10−4, 10−3, 10−2}.

Logistic Regression (LR): We use the BBR package
(Genkin et al., 2006) to train models with either L1

or L2 regularization. The regularization parameter is
varied by factors of ten from 10−7 to 105.

Naive Bayes (NB∗): Continuous attributes are
modeled as coming from a normal distribution. We use
smoothing and vary the number of unobserved values
{0,0.1,0.2,0.5,1,2,5,10,20,50,100}.

KNN∗: We use distance weighted KNN. We use the
1000 nearest neighbors weighted by a Gaussian kernel
with 40 different kernel widths in the range [0.1, 820].

The distance between two points is a weighted eu-
clidean distance where the weight of each feature is
determined by its information gain.

Random Forests (RF∗): We grow 500 trees and
the size of the feature set considered at each split is
s/2, s, 2s, 4s or 8s where s is the square root of the
number of attributes, as suggested in (Breiman, 2001).

Bagged Decision Trees(BAGDT∗): We bag 100
ID3 trees. The same implementation is used for
boosted stumps (BSTST∗) and boosted trees
(BSTDT∗) but because full-size ID3 trees can’t eas-
ily be boosted, we stop splitting when a node contains
less than 50 examples. We do 210 and 215 iterations of
boosting for trees and stumps respectively and use the
validation set to pick the number of iterations from
the set {2i|i = 0, 1, ...15}.

Perceptrons (PRC∗): We train voted perceptrons
(Freund & Schapire, 1999) with 1,5,10,20 and 30 passes
through the data. We also average 100 perceptrons
each of which is obtained by a single pass through a
permutation of the data.

With SVM, ANN, LR, KNN and PRC and datasets
with continuous attributes we train both on raw and
standardized data. This preprocessing can be thought
of as one more parameter for these algorithms. To
preserve sparsity, which is crucial for the implementa-
tions we use, we treat the mean of each feature as zero,
compute the standard deviation, and divide by it.

2.2. Performance Metrics

To evaluate performance we use three metrics: accu-
racy (ACC), a threshold metric, squared error (RMS),
a probability metric, and area under the ROC curve
(AUC), an ordering metric. To standardize scores
across different problems and metrics, we divide per-
formances by the median performance observed on
each problem for that metric. For squared error we
also invert the scale so that larger numbers indicate
better performance as with accuracy and AUC.

2.3. Calibration

The output of some learning algorithms such as ANN,
logistic regression, bagged trees and random forests
can be interpreted as the conditional probability of the
class given the input. The common implementation of
other methods such as SVM and boosting, however,
are not designed to predict probabilities (Niculescu-
Mizil & Caruana, 2005).

To overcome this, we use two different methods to
map the predictions from each learning algorithm to



An Empirical Evaluation of Supervised Learning in High Dimensions

calibrated probabilities. The first is Isotonic Regres-
sion (Zadrozny & Elkan, 2002), a method which fits
a non-parametric non-decreasing function to the pre-
dictions. The second calibration method is Platt’s
method (Platt, 1999) which fits a sigmoid to the pre-
dictions. (Niculescu-Mizil & Caruana, 2005) suggests
that Platt’s method outperforms isotonic regression
when there is less than about 1000 points available
to learn the calibration function, and that calibration
can hurt predictions from methods such as ANN and
logistic regression (Caruana & Niculescu-Mizil, 2006).
We will revisit those findings later in the discussion.
Finally, note that calibrating can affect metrics other
than probability metrics such as squared loss. It can
affect accuracy by changing the optimal threshold (for
calibrated predictions the optimum threshold will be
near 0.5) and Isotonic Regression can affect AUC by
creating ties on calibration plateaus where prior to cal-
ibration there was a definite ordering.

To summarize our methodology, we optimize for each
dataset and metric individually. For each algorithm
and parameter setting we calibrate the predictions us-
ing isotonic regression, Platt’s method, and the iden-
tity function (no calibration) and choose the parame-
ter settings and calibration method that optimizes the
performance metric on a validation set.

2.4. Data Sets

We compare the methods on 11 binary classification
problems whose dimensionality ranges from 761 to
685569. The datasets are summarized in Table 1.

TIS1 is from the Kent Ridge Bio-medical Data Repos-
itory. The problem is to find Translation Initia-
tion Sites (TIS) at which translation from mRNA
to proteins initiates. CRYST2 is a protein crys-
tallography diffraction pattern analysis dataset from
the X6A beamline at Brookhaven National Labora-
tory. STURN and CALAM are ornithology datasets.3

The task is to predict the appearance of two bird
species: sturnella neglecta and calamospiza melanoco-
rys. KDD98 is from the 1998 KDD-Cup. The task
is to predict if a person donates money. This is the
only dataset with missing values. We impute the
mean for continuous features and treat missing nom-
inal and boolean features as new values. DIGITS4 is
the MNIST database of handwritten digits by Cortes
and LeCun. It was converted from a 10 class problem
to a hard binary problem by treating digits less than 5

1
http://research.i2r.a-star.edu.sg/GEDatasets/Datasets.html

2http://ajbcentral.com/CrySis/dataset.html
3Art Munson, Personal Communication
4http://yann.lecun.com/exdb/mnist/

Table 1. Description of problems

Problem Attr Train Valid Test %Pos

Sturn 761 10K 2K 9K 33.65
Calam 761 10K 2K 9K 34.32
Digits 780 48K 12K 10K 49.01
Tis 927 5.2K 1.3K 6.9K 25.13
Cryst 1344 2.2K 1.1K 2.2K 45.61
KDD98 3848 76.3K 19K 96.3K 5.02
R-S 20958 35K 7K 30.3K 30.82
Cite 105354 81.5K 18.4K 81.5K 0.17
Dse 195203 120K 43.2K 107K 5.46
Spam 405333 36K 9K 42.7K 44.84
Imdb 685569 84K 18.4K 84K 0.44

as one class and the rest as the other class. IMDB and
CITE are link prediction datasets.5 For IMDB each
attribute represents an actor, director, etc. For CITE
attributes are the authors of a paper in the CiteSeer
digital library. For IMDB the task is to predict if Mel
Blanc was involved in the film or television program
and for CITE the task is to predict if J. Lee was a coau-
thor of the paper. We created SPAM from the TREC
2005 Spam Public Corpora. Features take binary val-
ues showing if a word appears in the document or not.
Words that appear less than three times in the whole
corpus were removed. Real-Sim (R-S) is a compilation
of Usenet articles from four discussion groups: simu-
lated auto racing, simulated aviation, real autos and
real aviation.6 The task is to distinguish real from sim-
ulated. DSE7 is newswire text with annotated opinion
expressions. The task is to find Subjective Expressions
i.e. if a particular word expresses an opinion.

To split data into training, validation and test sets, if
the data came with original splits for train and test
sets (i.e. DIGITS, KDD98) we preserved those splits
and created validation sets as 10% of the train set. If
the data originally was split into folds, we merged some
folds to create a training set, a validation set and a test
set. (We did this because running these experiments
is so costly that we could not afford to perform N-fold
cross validation as this would make the experiments
about N times more costly.) DSE came in 10 folds
plus a development fold twice as big as other folds.
We used the development fold as the validation set
and merged the first 5 folds for the train set and the
rest for the test set. CRYST came in 5 folds. One
fold became the validation set, 2 folds were merged for
training and the rest became the test set.

For the rest of the datasets we tried to balance be-

5http://komarix.org/ac/ds
6http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets
7Eric Breck, Personal Communication



An Empirical Evaluation of Supervised Learning in High Dimensions

tween the following factors: (a) The test sets should
be large enough so that differences between learning al-
gorithms are apparent. (b) The test sets can be larger
when the learning task is easy, but more data should
be kept in the training set when the learning task is
hard. (c) Some datasets would inevitably have more
attributes than examples in the training set (IMDB,
CITE, SPAM); for the rest we tried to put enough ex-
amples in the training set so that methods with small
bias might learn something interesting. (d) The vali-
dation sets should be big enough so that parameter se-
lection and calibration works well. In general we split
the data so that we have around 50% in the training
set and 50% in the test set. Validation data is drawn
from the training set.

3. Results

Table 2 shows the performance of each learning
method on each of the eleven problems. In the ta-
ble, the problems are arranged left to right in order
of increasing dimensionality. The table is broken into
four sections. The top three sections report results for
Accuracy (ACC), Squared Error (RMS), and Area un-
der the ROC Curve (AUC). The bottom section is the
average of the performance across these three metrics.

For each metric and problem, the performances have
been standardized by dividing by the median perfor-
mance observed for that problem and metric. With-
out standardization it is difficult to perform an unbi-
ased comparison across different datasets and metrics.
A score of one indicates that the method had typical
performance on that problem and metric compared to
the other learning methods. Scores above one indi-
cate better than typical performance, while scores less
than one indicate worse than typical performance. The
scale for RMS has been reversed so that scores above
one represent better than typical, i.e., lower, RMS.8

The median performance for each problem and metric
is included in the table to allow calculating raw perfor-
mances from the standardized scores. The last column
in the table is the average score across the eleven test
problems. In each section of the table, learning algo-
rithms are sorted by these average scores. The last
column of the last section represents the average score
across all problems and metrics.

Examining the results in the bottom section shows

8This is different and simpler than the normalized scores
used in (Caruana & Niculescu-Mizil, 2006). We have exper-
imented with several ways of standardizing scores and the
results change little with different methods. The learning
methods that rank at the top (and the bottom) are least
affected by the exact standardization method.

that on average across all problems and metrics, ran-
dom forests have the highest overall performance. On
average, they perform about 1% (1.0102) better than
the typical model and about 0.6% (1.0102 vs. 1.0039)
better than the next best method, ANN. The best
methods overall are RF, ANN, boosted decision trees,
and SVMs. The worst performing methods are Naive
Bayes and perceptrons. On average, the top eight of
ten methods fall within about 2% of each other. While
it is not easy to achieve an additional 1% of perfor-
mance at the top end of the scale, it is interesting that
so many methods perform this similarly to each other
on these high-dimensional problems.

If we examine the results for each of the metrics in-
dividually, we notice that the largest differences in
performance among the different learning algorithms
occur for AUC and the smallest differences occur for
ACC. For accuracy, boosted decision trees are the best
performing models followed by random forests. How-
ever, a closer examination of the table shows that
boosted trees do better in accuracy mostly because of
their excellent performance on the datasets with rel-
atively low dimensionality. Comparing boosted trees
with random forests in the left part of the table we see
that random forests outperform boosted trees only on
the TIS dataset. The situation is reversed on the right
part of the table where boosted trees outperform ran-
dom forests only on the CITE dataset. As dimension-
ality increases, we expect boosted trees to fall behind
random forests.

In RMS, random forests are marginally better than
boosted trees. This is confirmed by a bootstrap anal-
ysis (cf. Section 4): random forests have 33% and 35%
chance of ranking 1st and 2nd respectively, while for
boosted trees the corresponding probabilities are 31%
and 21%. However, in AUC random forests are clear
winners followed by, somewhat surprisingly, KNN.

Interestingly, although ANN is the 2nd best method
overall in the bottom of the table, is does not per-
form 1st or 2nd for any of the individual metrics in
the top of the table. It is 2nd overall only because
ANNs consistently yield very good, though perhaps
not exceptional, performance on all metrics.

A fact that is not apparent from the table is that cali-
bration with isotonic regression works better than cal-
ibrating with Platt’s method, or no calibration, on
most problems and thus was used for almost all of
the results reported in the table. Since our valida-
tion sets always are larger than 1000 examples, this
confirms the findings in (Niculescu-Mizil & Caruana,
2005) that isotonic regression is preferred with large
validation sets.



An Empirical Evaluation of Supervised Learning in High Dimensions

Table 2. Standardized scores of each learning algorithm
DIM 761 761 780 927 1344 3448 20958 105354 195203 405333 685569 —

ACC Sturn Calam Digits Tis Cryst Kdd98 R-S Cite Dse Spam Imdb Mean

MEDIAN 0.6901 0.7337 0.9681 0.9135 0.8820 0.9494 0.9599 0.9984 0.9585 0.9757 0.9980 —

BSTDT 0.9962 1.0353 1.0120 0.9993 1.0178 0.9998 0.9904 1.0000 0.9987 0.9992 1.0000 1.0044

RF 0.9943 1.0103 1.0076 1.0025 1.0162 1.0000 0.9995 0.9998 1.0013 1.0044 1.0000 1.0033

SVM 1.0044 1.0018 1.0024 1.0060 1.0028 0.9999 1.0156 1.0008 1.0004 1.0008 1.0003 1.0032

BAGDT 1.0001 1.0350 0.9976 1.0017 1.0111 1.0000 0.9827 1.0000 0.9996 0.9959 1.0000 1.0021

ANN 0.9999 0.9899 1.0051 1.0007 0.9869 1.0000 1.0109 1.0001 1.0018 1.0029 1.0003 0.9999

LR 1.0012 0.9896 0.8982 1.0108 1.0080 1.0000 1.0141 1.0001 1.0014 1.0026 0.9999 0.9932

BSTST 1.0077 1.0298 0.9017 0.9815 0.9930 1.0000 0.9925 0.9999 0.9948 0.9905 0.9989 0.9900

KNN 1.0139 0.9982 1.0122 0.9557 0.9972 0.9999 0.9224 1.0000 0.9987 0.9698 0.9996 0.9880

PRC 0.9972 0.9864 0.9010 0.9735 0.9930 1.0000 1.0119 0.9999 1.0007 1.0041 1.0001 0.9880

NB 0.9695 0.9347 0.8159 0.9230 0.9724 1.0000 1.0005 1.0000 0.9878 0.9509 0.9976 0.9593

RMS Sturn Calam Digits Tis Cryst Kdd98 R-S Cite Dse Spam Imdb Mean

MEDIAN 0.5472 0.5800 0.8449 0.7455 0.7051 0.7813 0.8257 0.9623 0.8154 0.8645 0.9597 —

RF 0.9980 1.0209 1.0186 1.0102 1.0277 1.0003 1.0011 0.9988 1.0072 1.0118 1.0006 1.0087

BSTDT 0.9993 1.0351 1.0363 0.9977 1.0323 0.9998 0.9781 1.0003 0.9983 1.0007 1.0003 1.0071

ANN 1.0042 0.9987 1.0088 1.0109 1.0014 1.0005 1.0315 1.0011 1.0068 1.0077 1.0022 1.0067

SVM 0.9979 0.9882 1.0076 1.0149 0.9972 0.9992 1.0409 1.0091 1.0067 0.9993 1.0004 1.0056

BAGDT 1.0007 1.0357 0.9924 1.0023 1.0218 0.9998 0.9587 1.0000 0.9994 0.9782 1.0012 0.9991

LR 1.0010 0.9963 0.8169 1.0232 0.9935 1.0007 1.0367 1.0009 1.0082 1.0073 0.9988 0.9894

PRC 0.9976 0.9841 0.8115 0.9537 0.9919 0.9998 1.0313 0.9979 1.0006 1.0071 0.9997 0.9796

BSTST 1.0078 1.0205 0.8202 0.9757 1.0021 1.0007 0.9861 1.0000 0.9900 0.9695 0.9952 0.9789

KNN 1.0119 1.0013 1.0365 0.9309 0.9986 1.0000 0.8468 0.9988 0.9983 0.9270 0.9941 0.9768

NB 0.9793 0.9509 0.7236 0.9031 0.9454 1.0000 0.9989 0.9981 0.9828 0.8984 0.9731 0.9412

AUC Sturn Calam Digits Tis Cryst Kdd98 R-S Cite Dse Spam Imdb Mean

MEDIAN 0.6700 0.7793 0.9945 0.9569 0.9490 0.5905 0.9913 0.7549 0.9008 0.9957 0.9654 —

RF 0.9892 1.0297 1.0017 1.0069 1.0134 1.0140 1.0009 1.0962 1.0304 1.0022 1.0209 1.0187

KNN 1.0397 0.9992 1.0024 0.9509 1.0007 1.0165 0.9905 1.1581 1.0027 0.9902 0.9648 1.0105

LR 1.0045 0.9903 0.9424 1.0136 1.0070 1.0492 1.0041 1.0272 1.0293 0.9999 1.0084 1.0069

ANN 1.0132 1.0008 1.0001 1.0042 0.9992 1.0461 1.0031 0.9779 1.0105 1.0001 1.0021 1.0052

BSTST 1.0199 1.0304 0.9468 0.9901 0.9993 1.0512 0.9991 0.9956 0.9973 0.9989 1.0036 1.0029

SVM 0.9870 0.9645 1.0002 1.0077 0.9909 0.9324 1.0032 1.1120 1.0100 1.0011 0.9979 1.0006

BSTDT 0.9991 1.0492 1.0033 0.9958 1.0137 0.9605 0.9962 0.9646 0.9881 1.0015 1.0041 0.9978

BAGDT 1.0009 1.0551 0.9999 1.0062 1.0116 0.9768 0.9890 0.9673 0.9691 0.9925 0.9809 0.9954

PRC 0.9973 0.9630 0.9372 0.9749 0.9937 0.9724 1.0036 0.9991 0.9777 1.0006 0.9477 0.9788

NB 0.9329 0.8936 0.8574 0.9407 0.9574 0.9860 0.9990 1.0009 0.9917 0.9798 0.8787 0.9471

AVG Sturn Calam Digits Tis Cryst Kdd98 R-S Cite Dse Spam Imdb Mean

RF 0.9938 1.0203 1.0093 1.0065 1.0191 1.0048 1.0005 1.0316 1.0130 1.0061 1.0072 1.0102

ANN 1.0058 0.9965 1.0047 1.0053 0.9958 1.0156 1.0152 0.9930 1.0064 1.0036 1.0015 1.0039

BSTDT 0.9982 1.0399 1.0172 0.9976 1.0212 0.9867 0.9882 0.9883 0.9950 1.0004 1.0014 1.0031

SVM 0.9965 0.9848 1.0034 1.0095 0.9970 0.9772 1.0199 1.0406 1.0057 1.0004 0.9995 1.0031

BAGDT 1.0006 1.0419 0.9966 1.0034 1.0148 0.9922 0.9768 0.9891 0.9894 0.9889 0.9940 0.9989

LR 1.0022 0.9921 0.8858 1.0159 1.0028 1.0166 1.0183 1.0094 1.0129 1.0033 1.0024 0.9965

KNN 1.0219 0.9996 1.0170 0.9458 0.9988 1.0055 0.9199 1.0523 0.9999 0.9623 0.9862 0.9917

BSTST 1.0118 1.0269 0.8896 0.9824 0.9982 1.0173 0.9926 0.9985 0.9941 0.9863 0.9992 0.9906

PRC 0.9974 0.9778 0.8832 0.9674 0.9929 0.9907 1.0156 0.9990 0.9930 1.0039 0.9825 0.9821

NB 0.9606 0.9264 0.7989 0.9223 0.9584 0.9953 0.9995 0.9997 0.9874 0.9430 0.9498 0.9492

3.1. Effect of Dimensionality

In this section we attempt to show the trends in per-
formance as a function of dimensionality. In Figure 1
the x-axis shows dimensionality on a log scale. The
y-axis is the cumulative score of each learning method
on problems of increasing dimensionality. The score is
the average across the three standardized performance
metrics where standardization is done by subtracting
the median performance on each problem.9 Subtract-
ing median performance means that scores above (be-
low) zero indicate better (worse) than typical perfor-
mance. The score accumulation is done left-to-right

9Here we subtract the median instead of dividing by it
because we are accumulating relative performance. Stan-
dardization by subtracting the median yields similar rank-
ings as dividing by the median.

on problems of increasing dimensionality. A line that
tends to slope upwards (downwards) signifies a method
that performs better (worse) on average compared to
other methods as dimensionality increases. A horizon-
tal line suggests typical performance across problems
of different dimensionality. Naive Bayes is excluded
from the graph because it falls far below the other
methods. Caution must be used when interpreting
cumulative score plots. Due to the order in which
scores are aggregated, vertical displacement through
much of the graph is significantly affected by the per-
formance on problems of lower dimensionality. The
end of the graph on the right, however, accumulates
across all problems and thus does not favor problems
of any dimensionality, The slope roughly corresponds
to the average relative performance across dimensions.
From the plot it is clear that boosted trees do very



An Empirical Evaluation of Supervised Learning in High Dimensions

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 100  1000  10000  100000  1e+006

cu
m

ul
at

iv
e 

sc
or

e

dimension

ANN
BAGDT
BSTDT

KNN
SVM

LR
BSTST

PRC
RF

Figure 1. Cumulative standardized scores of each learning
algorithm as a function of the dimension.

well in modest dimensions, but lose ground to ran-
dom forests, neural nets, and SVMs as dimensionality
increases. Also, linear methods such as logistic regres-
sion begin to catch up as dimensionality increases.

Figure 2 shows the same results as Figure 1, but pre-
sented differently to avoid the complexity of accumu-
lation. Here each point in the graph is the average per-
formance of the 5 problems of lowest dimension (from
761 to 1344), the 5 problems of highest dimension (21K
to 685K) and 5 problems of intermediate dimension
(927 to 105K). Care must be used when interpreting
this graph because each point averages over only 5 data
sets. The results suggest that random forests overtake
boosted trees. They are among the top performing
methods for high-dimensional problems together with
logistic regression and SVMs. Again we see that neu-
ral nets are consistently yielding above average per-
formance even in very high dimension. Boosted trees,
bagged trees, and KNN do not appear to cope well
in very high dimensions. Boosted stumps, percep-
trons, and Naive Bayes perform worse than the typical
method regardless of dimension.

Figure 3 shows results similar to Figure 2 but only for
different classes of SVMs: linear-only (L), kernel-only
(K) and linear that can optimize accuracy or AUC
(L+P) (Joachims, 2006). We also plot combinations
of these (L+K and L+K+P) where the specific model
that is best on the validation set is selected. The re-
sults suggest that the best overall performance with
SVMs results from trying all possible SVMs (using the
validation set to pick the best). Linear SVMs that
can optimize accuracy or AUC outperform simple lin-
ear SVMs at modest dimensions, but have little effect
when dimensionality is very high. Similarly, simple lin-
ear SVMs though not competitive with kernel SVMs at
low dimensions, catch up as dimensionality increases.

-0.035

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

 0

 0.005

 0.01

 0.015

 100  1000  10000  100000  1e+006

av
er

ag
e 

sc
or

e

dimension

ANN
BAGDT
BSTDT

KNN
SVM

LR
BSTST

PRC
RF

Figure 2. Moving average standardized scores of each
learning algorithm as a function of the dimension.

-0.035

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

 0

 0.005

 0.01

 0.015

 100  1000  10000  100000  1e+006

av
er

ag
e 

sc
or

e

dimension

SVM-L
SVM-L+P

SVM-K
SVM-L+K

SVM-L+K+P

Figure 3. Moving average standardized scores for different
SVM algorithms as a function of the dimension.

4. Bootstrap Analysis

We could not afford cross validation in these experi-
ments because it would be too expensive. For some
datasets and some methods, a single parameter set-
ting can take days or weeks to run. Instead we used
large test sets to make our estimates more reliable and
adequately large validation sets to make sure that the
parameters we select are good. However, without a
statistical analysis, we cannot be sure that the differ-
ences we observe are not merely statistical fluctuation.

To help insure that our results would not change if we
had selected datasets differently we did a bootstrap
analysis similar to the one in (Caruana & Niculescu-
Mizil, 2006). For a given metric we randomly select
a bootstrap sample (sampling with replacement) from
our 11 problems and then average the performance
of each method across the problems in the bootstrap
sample. Then we rank the methods. We repeat the
bootstrap sampling 20,000 times and get 20,000 po-
tentially different rankings of the learning methods.



An Empirical Evaluation of Supervised Learning in High Dimensions

Table 3 shows the results of the bootstrap analysis.
Each entry in the table shows the percentage of time
that each learning method ranks 1st, 2nd, 3rd, etc. on
bootstrap samples of the datasets. Because of space
limits, we only show results for average performance
across the three metrics.

The bootstrap analysis suggests that random forests
probably are the top performing method overall, with
a 73% chance of ranking first, a 20% chance of ranking
second, and less than a 8% chance of ranking below
2nd place. The ranks of other good methods, however,
are less clear and there appears to be a three-way tie
for 2nd place for boosted trees, ANNs, and SVMs.

5. Computational Challenges

Running this kind of experiment in high dimensions
presents many computational challenges. In this sec-
tion we outline a few of them.

In most high dimensional data features are sparse
and the learning methods should take advantage of
sparse vectors. For ANN, for example, when inputs
are sparse, a lot of computation in the forward direc-
tion can be saved by using a matrix times sparse vector
procedure. More savings happen when the weights are
updated since the gradient of the error with respect
to a weight going out of a unit with zero value van-
ishes. This is why our ANN implementation does not
use momentum. If it did, all weights would have to be
updated each iteration.

Another caveat is that for tree learning algorithms,
indexing the data by feature instead of by example
can speed up queries about which examples exhibit a
particular feature. These queries are common during
learning and one should consider this indexing scheme.
Our random forest implementation indexes by feature.

Boosted decision trees on continuous data was the
slowest of all methods. For bagged trees running times
were better because we only grew 100 trees that can
be grown in parallel. The same holds for random
forests which have the added benefit that computation
scales with the square root of dimensionality. Train-
ing ANNs was sometimes slow, mainly because ap-
plying some of the techniques in (Le Cun et al., 1998)
would not preserve the sparsity of the data. For SVMs
and logistic regression, we didn’t have computational
problems thanks to recent advances in scaling them
(Genkin et al., 2006; Bordes et al., 2005; Joachims,
2006; Shalev-Shwartz et al., 2007). As a sanity check
we compared the performance of the approximate ker-
nel SVM solver with the exact SVMlight on some of
our smallest problems and found no significant dif-

ference. Naive Bayes and perceptrons are among the
fastest methods. KNN was sufficiently fast that we
didn’t have to use specialized data structures for near-
est neighbor queries.

6. Related Work

Our work is most similar to (Caruana & Niculescu-
Mizil, 2006). We already pointed out shortcomings
in that study, but we also borrowed much from their
methodology and tried to improve on it. STATLOG
(King et al., 1995) was another comprehensive empir-
ical study that was discussed in Section 1. A study by
LeCun (LeCun et al., 1995) compares learning algo-
rithms not only based on traditional performance met-
rics but also with respect to computational cost. Our
study addresses this issue only qualitatively. Clearly,
computational issues have to be taken into considera-
tion in such large scale. A wide empirical comparison
of voting algorithms such as bagging and boosting is
conducted in (Bauer & Kohavi, 1999). The impor-
tance of evaluating performance on metrics such as
AUC is discussed thoroughly in (Provost & Fawcett,
1997). The effect of different calibration methods is
discussed in (Niculescu-Mizil & Caruana, 2005).

7. Discussion

Although there is substantial variability in perfor-
mance across problems and metrics in our experi-
ments, we can discern several interesting results. First,
the results confirm the experiments in (Caruana &
Niculescu-Mizil, 2006) where boosted decision trees
perform exceptionally well when dimensionality is low.
In this study boosted trees are the method of choice
for up to about 4000 dimensions. Above that, random
forests have the best overall performance. (Random
forests were the 2nd best performing method in the
previous study.) We suspect that the reason for this is
that boosting trees is prone to overfitting and this be-
comes a serious problem in high dimensions. Random
forests is better behaved in very high dimensions, it is
easy to parallelize, scales efficiently to high dimensions
and performs consistently well on all three metrics.

Non-linear methods do surprisingly well in high dimen-
sions if model complexity can be controlled, e.g. by
exploring the space of hypotheses from simple to com-
plex (ANN), by margins (SVMs), or by basing some
decisions on random projections (RF). Logistic regres-
sion and linear SVMs also gain in performance as di-
mensionality increases. Contrary to low dimensions, in
high dimensions we have no evidence that linear SVMs
can benefit from training procedures that directly op-



An Empirical Evaluation of Supervised Learning in High Dimensions

Table 3. Bootstrap analysis of rankings by average performance across problems
AVG 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

RF 0.727 0.207 0.054 0.011 0.001 0 0 0 0 0

ANN 0.053 0.172 0.299 0.256 0.119 0.072 0.019 0.011 0 0

BSTDT 0.059 0.228 0.18 0.222 0.18 0.075 0.044 0.012 0.001 0

SVM 0.043 0.195 0.213 0.193 0.156 0.088 0.08 0.031 0.001 0

LR 0.089 0.132 0.073 0.075 0.108 0.177 0.263 0.081 0 0

BAGDT 0.002 0.012 0.109 0.123 0.251 0.284 0.123 0.078 0.016 0

KNN 0.023 0.045 0.051 0.057 0.085 0.172 0.122 0.177 0.258 0.01

BSTST 0.004 0.009 0.021 0.063 0.086 0.109 0.3 0.387 0.02 0

PRC 0 0 0 0 0.013 0.024 0.047 0.222 0.695 0

NB 0 0 0 0 0 0 0 0 0.01 0.99

timize specific metrics such as AUC.

The results suggest that calibration never hurts and
almost always helps on these problems. Even meth-
ods such as ANN and logistic regression benefit from
calibration in most cases. We suspect that the reasons
for this are the availability of more validation data for
calibration than in previous studies and that high di-
mensional problems are harder in some sense.

Acknowledgments

We thank all the students who took CS678 at Cor-
nell in the spring of 2007 and helped with this study.
We especially thank Sergei Fotin, Michael Friedman,
Myle Ott and Raghu Ramanujan who implemented
KNN, ANNs, Random Forests and Boosted Trees re-
spectively. We also thank Alec Berntson Eric Breck
and Art Munson for providing the crystallography,
DSE and ornithology datasets respectively. Art also
put together the calibration procedures. Finally, we
thank the 3 anonymous reviewers for their helpful
comments. This work was supported in part by NSF
Awards 0412930 and 0412894.

References

Bauer, E., & Kohavi, R. (1999). An empirical com-
parison of voting classification algorithms: Bagging,
boosting, and variants. MLJ, 36, 105–139.

Bordes, A., Ertekin, S., Weston, J., & Bottou, L.
(2005). Fast kernel classifiers with online and ac-
tive learning. JMLR, 6, 1579–1619.

Breiman, L. (2001). Random Forests. MLJ, 45, 5–32.

Caruana, R., & Niculescu-Mizil, A. (2006). An empir-
ical comparison of supervised learning algorithms.
ICML ’06, 161–168.

Freund, Y., & Schapire, R. (1999). Large Margin Clas-
sification Using the Perceptron Algorithm. MLJ, 37,
277–296.

Genkin, A., Lewis, D., & Madigan, D. (2006). Large-
scale bayesian logistic regression for text categoriza-
tion. Technometrics.

Joachims, T. (2006). Training linear SVMs in linear
time. SIGKDD, 217–226.

King, R., Feng, C., & Shutherland, A. (1995). Statlog:
comparison of classification algorithms on large real-
world problems. Applied Artificial Intelligence, 9,
259–287.

Le Cun, Y., Bottou, L., Orr, G. B., & Müller, K.-
R. (1998). Efficient backprop. In Neural networks,

tricks of the trade, LNCS 1524. Springer Verlag.

LeCun, Y., Jackel, L., Bottou, L., Brunot, A., Cortes,
C., Denker, J., Drucker, H., Guyon, I., Muller, U.,
Sackinger, E., et al. (1995). Comparison of learning
algorithms for handwritten digit recognition. Inter-

national Conference on Artificial Neural Networks,
60.

Niculescu-Mizil, A., & Caruana, R. (2005). Predicting
good probabilities with supervised learning. ICML

’05, 625–632.

Platt, J. (1999). Probabilistic outputs for support vec-
tor machines and comparisons to regularized likeli-
hood methods. Advances in Large Margin Classi-

fiers, 10.

Provost, F. J., & Fawcett, T. (1997). Analysis and
visualization of classifier performance: Comparison
under imprecise class and cost distributions. KDD

’97 (pp. 43–48).

Shalev-Shwartz, S., Singer, Y., & Srebro, N. (2007).
Pegasos: Primal estimated sub-gradient solver for
svm. ICML ’07 (pp. 807–814).

Zadrozny, B., & Elkan, C. (2002). Transforming clas-
sifier scores into accurate multiclass probability es-
timates. KDD ’02, 694–699.


