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Abstract

Inspired by co-training, many multi-view
semi-supervised kernel methods implement
the following idea: find a function in each of
multiple Reproducing Kernel Hilbert Spaces
(RKHSs) such that (a) the chosen functions
make similar predictions on unlabeled exam-
ples, and (b) the average prediction given
by the chosen functions performs well on
labeled examples. In this paper, we con-
struct a single RKHS with a data-dependent
“co-regularization” norm that reduces these
approaches to standard supervised learn-
ing. The reproducing kernel for this RKHS
can be explicitly derived and plugged into
any kernel method, greatly extending the
theoretical and algorithmic scope of co-
regularization. In particular, with this devel-
opment, the Rademacher complexity bound
for co-regularization given in (Rosenberg
& Bartlett, 2007) follows easily from well-
known results. Furthermore, more refined
bounds given by localized Rademacher com-
plexity can also be easily applied. We pro-
pose a co-regularization based algorithmic al-
ternative to manifold regularization (Belkin
et al., 2006; Sindhwani et al., 2005a) that
leads to major empirical improvements on
semi-supervised tasks. Unlike the recently
proposed transductive approach of (Yu et al.,
2008), our RKHS formulation is truly semi-
supervised and naturally extends to unseen
test data.

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

1. Introduction

In semi-supervised learning, we are given a few la-
beled examples together with a large collection of un-
labeled data from which to estimate an unknown tar-
get function. Suppose we have two hypothesis spaces,
H1 and H2, each of which contains a predictor that
well-approximates the target function. We know that
predictors that agree with the target function also agree
with each other on unlabeled examples. Thus, any pre-
dictor in one hypothesis space that does not have an
“agreeing predictor” in the other can be safely elimi-
nated from consideration. Due to the resulting reduc-
tion in the complexity of the joint learning problem,
one can expect improved generalization performance.

These conceptual intuitions and their algorithmic in-
stantiations together constitute a major line of work
in semi-supervised learning. One of the earliest ap-
proaches in this area was “co-training” (Blum &
Mitchell, 1998), in which H1 and H2 are defined
over different representations, or “views”, of the data,
and trained alternately to maximize mutual agree-
ment on unlabeled examples. More recently, sev-
eral papers have formulated these intuitions as joint
complexity regularization, or co-regularization, be-
tween H1 and H2 which are taken to be Reproducing
Kernel Hilbert Spaces (RKHSs) of functions defined
on the input space X . Given a few labeled exam-
ples {(xi, yi)}i∈L and a collection of unlabeled data
{xi}i∈U , co-regularization learns a prediction func-
tion,

f⋆(x) =
1

2

(

f1
⋆ (x) + f2

⋆ (x)
)

(1)

where f1
⋆ ∈ H1 and f2

⋆ ∈ H2 are obtained by solving
the following optimization problem,

(f1
⋆ , f2

⋆ ) = argmin
f1∈H1,f2∈H2

γ1||f1||2H1 + γ2||f2||2H2

+µ
∑

i∈U

[f1(xi) − f2(xi)]
2 +

∑

i∈L

V (yi, f(xi)) (2)
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In this objective function, the first two terms measure
complexity by the RKHS norms ‖ · ‖2

H1
and ‖ · ‖2

H2

in H1 and H2 respectively, the third term enforces
agreement among predictors on unlabeled examples,
and the final term evaluates the empirical loss of the
mean function f = (f1 + f2)/2 on the labeled data
with respect to a loss function V (·, ·). The real-valued
parameters γ1, γ2, and µ allow different tradeoffs be-
tween the regularization terms. L and U are index sets
over labeled and unlabeled examples respectively.

Several variants of this formulation have been pro-
posed independently and explored in different con-
texts: linear logistic regression (Krishnapuram et al.,
2005), regularized least squares classification (Sind-
hwani et al., 2005b), regression (Brefeld et al., 2006),
support vector classification (Farquhar et al., 2005),
Bayesian co-training (Yu et al., 2008), and generaliza-
tion theory (Rosenberg & Bartlett, 2007).

The main theoretical contribution of this paper is the
construction of a new “co-regularization RKHS,” in
which standard supervised learning recovers the so-
lution to the co-regularization problem of Eqn. 2.
Theorem 2.2 presents the RKHS and gives an ex-
plicit formula for its reproducing kernel. This “co-
regularization kernel” can be plugged into any stan-
dard kernel method giving convenient and immediate
access to two-view semi-supervised techniques for a
wide variety of learning problems. Utilizing this ker-
nel, in Section 3 we give much simpler proofs of the
results of (Rosenberg & Bartlett, 2007) concerning
bounds on the Rademacher complexity and general-
ization performance of co-regularization. As a more
algorithmic application, in Section 4 we consider the
semi-supervised learning setting where examples live
near a low-dimensional manifold embedded in a high
dimensional ambient euclidean space. Our approach,
manifold co-regularization (CoMR), gives major em-
pirical improvements over the manifold regularization
(MR) framework of (Belkin et al., 2006; Sindhwani
et al., 2005a).

The recent work of (Yu et al., 2008) considers a similar
reduction. However, this reduction is strictly trans-
ductive and does not allow prediction on unseen test
examples. By contrast, our formulation is truly semi-
supervised and provides a principled out-of-sample ex-
tension.

2. An RKHS for Co-Regularization

We start by reformulating the co-regularization opti-
mization problem, given in Eqn. 1 and Eqn. 2, in the
following equivalent form where we directly solve for

the final prediction function f⋆:

f⋆ = argmin
f

min
f=f1+f2

f1∈H1,f2∈H2

γ1

2
||f1||2H1 +

γ2

2
||f2||2H2 +

µ

2

∑

i∈U

[f1(xi) − f2(xi)]
2 +

1

2

∑

i∈L

V

(

yi,
1

2
f(xi)

)

(3)

Consider the sum space of functions, H̃, given by,

H̃ = H1 ⊕H2 (4)

= {f |f(x) = f1(x) + f2(x), f1 ∈ H1, f2 ∈ H2}

and impose on it a data-dependent norm,

‖f‖2
H̃ = min

f=f1+f2

f1∈H1,f2∈H2

γ1‖f1‖2
H1 + γ2‖f2‖2

H2

+µ
∑

i∈U

[

f1(xi) − f2(xi)
]2

(5)

The minimization problem in Eqn. 3 can then be posed
as standard supervised learning in H̃ as follows,

f⋆ = argmin
f∈H̃

γ‖f‖2
H̃ +

1

2

∑

i∈L

V

(

yi,
1

2
f(xi)

)

(6)

where γ = 1
2 . Of course, this reformulation is not

really useful unless H̃ itself is a valid new RKHS. Let
us recall the definition of an RKHS.

Definition 2.1 (RKHS). A reproducing kernel Hilbert
space (RKHS) is a Hilbert Space F that possesses a
reproducing kernel, i.e., a function k : X × X → R
for which the following hold: (a) k(x, .) ∈ F for all
x ∈ X , and (b) 〈f, k(x, .)〉F = f(x) for all x ∈ X and
f ∈ F , where 〈·, ·〉F denotes inner product in F .

In Theorem 2.2, we show that H̃ is indeed an RKHS,
and moreover we give an explicit expression for its re-
producing kernel. Thus, it follows that although the
domain of optimization in Eqn. 6 is nominally a func-
tion space, by the Representer Theorem we can express
it as a finite-dimensional optimization problem.

2.1. Co-Regularization Kernels

Let H1,H2 be RKHSs with kernels given by k1, k2 re-
spectively, and let H̃ = H1 ⊕H2 as defined in Eqn. 4.
We have the following result.

Theorem 2.2. There exists an inner product on H̃
for which H̃ is a RKHS with norm defined by Eqn. 5
and reproducing kernel k̃ : X × X → R given by,

k̃(x,z) = s(x,z) − µdT
xHdz (7)
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where s(x,z) is the (scaled) sum of kernels given by,

s(x,z) = γ−1
1 k1(x,z) + γ−1

2 k2(x,z),

and dx is a vector-valued function that depends on the
difference in views measured as,

dx = γ−1
1 k1

Ux − γ−1
2 k2

Ux,

where ki
Ux =

[

ki(x,xj), j ∈ U
]T

, and H is a positive-
definite matrix given by H = (I+µS)−1. Here, S is the
gram matrix of s(·, ·), i.e., S =

(

γ−1
1 K1

UU + γ−1
2 K2

UU

)

where Ki
UU = ki(U,U) denotes the Gram matrices of

ki over unlabeled examples.

We give a rigorous proof in Appendix A.

2.2. Representer Theorem

Theorem 2.2 says that H̃ is a valid RKHS with kernel
k̃. By the Representer Theorem, the solution to Eqn.6
is given by

f⋆(x) =
∑

i∈L

αik̃(xi,x) (8)

The corresponding components in H1,H2 can also be
retrieved as,

f1
⋆ (x) =

∑

i∈L

αiγ
−1
1

(

k1(xi,x) − µdT
xi

Hk1
Ux

)

(9)

f2
⋆ (x) =

∑

i∈L

αiγ
−1
2

(

k2(xi,x) + µdT
xi

Hk2
Ux

)

(10)

Note that H1 and H2 are defined on the same do-
main X so that taking the mean prediction is meaning-
ful. In a two-view problem one may begin by defining
H1,H2 on different view spaces X 1,X 2 respectively.
Such a problem can be mapped to our framework by
extending H1,H2 to X = X 1 × X 2 by re-defining
f1(x1,x2) = f1(x1), f1 ∈ H1; similarly for H2. While
we omit these technical details, it is important to note
that in such cases, Eqns. 9 and 10 can be reinterpreted
as predictors defined on X 1,X 2 respectively.

3. Bounds on Complexity and

Generalization

By eliminating all predictors that do not collectively
agree on unlabeled examples, co-regularization intu-
itively reduces the complexity of the learning prob-
lem. It is reasonable then to expect better test perfor-
mance for the same amount of labeled training data.
In (Rosenberg & Bartlett, 2007), the size of the co-
regularized function class is measured by its empiri-
cal Rademacher complexity, and tight upper and lower

bounds are given on the Rademacher complexity of the
co-regularized hypothesis space. This leads to general-
ization bounds in terms of the Rademacher complexity.
In this section, we derive these complexity bounds in
a few lines using Theorem 2.2 and a well-known result
on RKHS balls. Furthermore, we present improved
generalization bounds based on the theory of localized
Rademacher complexity.

3.1. Rademacher Complexity Bounds

Definition 3.1. The empirical Rademacher complex-
ity of a function class A = {f : X → R} on a sample
x1, . . . ,xℓ ∈ X is defined as

R̂ℓ(A) = Eσ

[

sup
f∈A

∣

∣

∣

∣

∣

2

ℓ

ℓ
∑

i=1

σif(xi)

∣

∣

∣

∣

∣

]

,

where the expectation is with respect to σ =
{σ1, . . . , σℓ}, and the σi are i.i.d. Rademacher ran-
dom variables, that is, P (σi = 1) = P (σi = −1) = 1

2 .

Let H be an arbitrary RKHS with kernel k(·, ·), and
denote the standard RKHS supervised learning objec-
tive function by Q(f) =

∑

i∈L V (yi, f(xi)) + λ||f ||2H.
Let f⋆ = argminf∈H Q(f). Then Q(f⋆) ≤ Q(0) =
∑

i∈L V (yi, 0). It follows that ‖f⋆‖2
H ≤ Q(0)/λ. Thus

if we have some control a priori on Q(0), then we
can restrict the search for f⋆ to a ball in H of radius
r =

√

Q(0)/λ.

We now cite a well-known result about the
Rademacher complexity of a ball in an RKHS (see
e.g. (Boucheron et al., 2005)). Let Hr := {f ∈ H :
||f ||H ≤ r} denote the ball of radius r in H. Then we
have the following:

Lemma 3.2. The empirical Rademacher complexity
on the sample x1, . . . ,xℓ ∈ X for the RKHS ball Hr is
bounded as follows: 1

4
√

2
2r
ℓ

√
trK ≤ R̂ℓ(Hr) ≤ 2r

ℓ

√
trK

where K =
(

k(xi,xj)
)ℓ

i,j=1
is the kernel matrix.

For the co-regularization problem described in
Eqns. 3 and 6, we have f⋆ ∈ H̃r where r2 =
ℓ supy V (0, y), where ℓ is number of labeled examples.
We now state and prove bounds on the Rademacher
complexity of H̃r. The bounds here are exactly the
same as those given in (Rosenberg & Bartlett, 2007).
However, while they have a lengthy “bare-hands” ap-
proach, here we get the result as a simple corollary of
Theorem 2.2 and Lemma 3.2.

Theorem 3.3. The empirical Rademacher complexity
on the labeled sample x1, . . . ,xℓ ∈ X for the RKHS
ball H̃r is bounded as follows:

1
4
√

2

2r

ℓ

√

trK̃ ≤ R̂ℓ(H̃r) ≤
2r

ℓ

√

trK̃,
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where
K̃ = γ−1

1 K1
LL +γ−1

2 K2
LL −µDT

UL (I + µS)
−1

DUL and
DUL =

(

γ−1
1 K1

UL − γ−1
2 K2

UL

)

Proof. Note that K̃ is just the kernel matrix for the co-
regularization kernel k̃(·, ·) on the labeled data. Then
the bound follows immediately from Lemma 3.2.

3.2. Co-Regularization Reduces Complexity

The co-regularization parameter µ controls the extent
to which we enforce agreement between f1 and f2. Let
H̃(µ) denote the co-regularization RKHS for a partic-
ular value of µ. From Theorem 3.3, we see that the
Rademacher complexity for a ball of radius r in H̃(µ)
decreases with µ by an amount determined by

∆(µ) = tr
[

µDT
UL (I + µS)

−1
DUL

]

(11)

=
ℓ

∑

i=1

ρ2
(

k1
Uxi

k2
Uxi

)

(12)

where ρ(·, ·) is a metric on R|U | defined by

ρ2(s, t) = µ(γ−1
1 s − γ−1

2 t)′ (I + µS)
−1

(γ−1
1 s − γ−1

2 t)

We see that the complexity reduction, ∆(µ), grows
with the ρ-distance between the two different repre-
sentations of the labeled points. Note that the metric
ρ is determined by S, which is the weighted sum of the
gram matrices of the two kernels on unlabeled data.

3.3. Generalization Bounds

With Theorem 2.2 allowing us to express multi-view
co-regularization problems as supervised learning in a
data-dependent RKHS, we can now bring a large body
of theory to bear on the generalization performance
of co-regularization methods. We start by quoting
the theorem proved in (Rosenberg & Bartlett, 2007).
Next, we state an improved bound based on localized
Rademacher complexity. Below, we denote the unit
ball in H̃ by H̃1.

Condition 1. The loss V (·, ·) is Lipschitz in its first
argument, i.e., there exists a constant A such that
∀y, ŷ1, ŷ2: |V (ŷ1, y) − V (ŷ2, y)| ≤ A |ŷ1 − ŷ2|
Theorem 3.4. Suppose V : Y2 → [0, 1] satisfies Con-
dition 1. Then conditioned on the unlabeled data, for
any δ ∈ (0, 1), with probability at least 1 − δ over
the sample of labeled points (x1, y1), . . . , (xℓ, yℓ) drawn
i.i.d. from P , we have for any predictor f ∈ H̃1 that

P [V (ϕ(x), y)] ≤ 1

ℓ

ℓ
∑

i=1

V (ϕ(xi), yi) + 2BR̂ℓ(H̃1)

+
1√
ℓ

(

2 + 3
√

ln(2/δ)/2
)

We need two more conditions for the localized bound:

Condition 2. For any probability distribution P ,
there exists f⋆ ∈ H̃1 satisfying P [V (f⋆(x), y)] =
inff∈H̃1

P [V (f(x), y)]

Condition 3. There is a constant B ≥ 1 such that
for every probability distribution P and every f ∈ H̃1

we have, P (f − f∗)2 ≤ BP (V [f(x), y] − V [f⋆(x), y)])

In the following theorem, let Pℓ denote the empirical
probability measure for the labeled sample of size ℓ.

Theorem 3.5. [Cor. 6.7 from (Bartlett et al., 2002)]
Assume that supx∈X k(x,x) ≤ 1 and that V satisfies

the 3 conditions above. Let f̂ be any element of H̃1

satisfying PℓV [f̂(x), y] = inff∈H̃1
PℓV [f(x), y]. There

exist a constant c depending only on A and B s.t. with
probability at least 1 − 6e−ν ,

P
(

V [f̂(x), y] − V [f⋆(x), y]
)

≤ c
(

r̂∗ +
ν

ℓ

)

,

where r̂∗ ≤ min0≤h≤ℓ

(

h
ℓ

+ 1
ℓ

√
∑

i>h λi

)

and where
λ1, . . . , λℓ are the eigenvalues of the labeled-data kernel
matrix K̃LL in decreasing order.

Note that while Theorem 3.4 bounds the gap between
expected and empirical performance of an arbitrary
f ∈ H̃1, Theorem 3.5 bounds the gap between the
empirical loss minimizer over H̃1 and true risk min-
imizer in H̃1. Since the localized bound only needs
to account for the capacity of the function class in the
neighborhood of f∗, the bounds are potentially tighter.
Indeed, while the bound in Theorem 3.4 is in terms of
the trace of the kernel matrix, the bound in Theo-
rem 3.5 involves the tail sum of kernel eigenvalues. If
the eigenvalues decay very quickly, the latter is poten-
tially much smaller.

4. Manifold Co-Regularization

Consider the picture shown in Figure 1(a) where there
are two classes of data points in the plane (R2) lying
on one of two concentric circles. The large, colored
points are labeled while the smaller, black points are
unlabeled. The picture immediately suggests two no-
tions of distance that are very natural but radically
different. For example, the two labeled points are close
in the ambient euclidean distance on R2, but infinitely
apart in terms of intrinsic geodesic distance measured
along the circles.

Suppose for this picture one had access to two kernel
functions, k1, k2 that assign high similarity to nearby
points according to euclidean and geodesic distance
respectively. Because of the difference in ambient and
intrinsic representations, by co-regularizing the asso-
ciated RKHSs one can hope to get good reductions in
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complexity, as suggested in section 3.2. In Figure 1,
we report the value of complexity reduction (Eqn. 12)
for four point clouds generated at increasing levels of
noise off the two concentric circles. When noise be-
comes large, the ambient and intrinsic notions of dis-
tance converge and the amount of complexity reduc-
tion decreases.

Figure 1. Complexity Reduction ∆(µ = 1) (Eqn. 12) with
respect to noise level ρ. The choice of k1, k2 is discussed in
the following subsections.

(a) ∆ = 7957, ρ = 0 (b) ∆ = 7569, ρ = 0.1

(c) ∆ = 3720, ρ = 0.2 (d) ∆ = 3502, ρ = 0.5

The setting where data lies on a low-dimensional
submanifold M embedded in a higher dimensional
ambient space X , as in the concentric circles case
above, has attracted considerable research interest re-
cently, almost orthogonal to multi-view efforts. The
main assumption underlying manifold-motivated semi-
supervised learning algorithms is the following: two
points that are close with respect to geodesic distances
on M should have similar labels. Such an assump-
tion may be enforced by an intrinsic regularizer that
emphasizes complexity along the manifold.

Since M is truly unknown, the intrinsic regularizer is
empirically estimated from the point cloud of labeled
and unlabeled data. In the graph transduction ap-
proach, an nn-nearest neighbor graph G is constructed
which serves as an empirical substitute for M. The
vertices V of this graph are the set of labeled and un-
labeled examples. Let HI denote the space of all func-
tions mapping V to R, where the subscript I implies
“intrinsic.” Any function f ∈ HI can be identified
with the vector f = [f(xi),xi ∈ V]T . One can impose

a norm ‖f‖2
I =

∑

ij Wij [f(xi) − f(xj)]
2

on HI that
provides a natural measure of smoothness for f with

respect to the graph. Here, W denotes the adjacency
matrix of the graph. When X is a euclidean space, a

typical W is given by Wij = exp(−‖xi−xj‖2

2σ2 ) if i and
j are nearest neighbors and 0 otherwise. In practice,
one may use a problem dependent similarity matrix to
set these edge weights. This norm can be conveniently
written as a quadratic form fT Mf , where M is the
graph Laplacian matrix defined as M = D−W , and D
is a diagonal degree matrix with entrees Dii =

∑

j Wij .

It turns out that HI with the norm ‖ · ‖I is an
RKHS whose reproducing kernel kI : V × V →
R is given by kI(xi,xj) = M†

ij , where M† de-
notes the pseudo-inverse of the Laplacian. Given
HI with its reproducing kernel, graph transduction
solves the standard RKHS regularization problem,
f⋆ = argminf∈HI

γ‖f‖2
I +

∑

i∈L V (yi, f(xi)), where
yi is the label associated with the node xi. Note that
the solution f⋆ is only defined over V, the set of la-
beled and unlabeled examples. Since graph transduc-
tion does not provide a function whose domain is the
ambient space X , it is not clear how to make predic-
tions on unseen test points x ∈ X . Possessing a prin-
cipled “out-of-sample extension” distinguishes semi-
supervised methods from transductive procedures.

4.1. Ambient and Intrinsic Co-Regularization

We propose a co-regularization solution for out-of-
sample prediction. Conceptually, one may interpret
the manifold setting as a multi-view problem where
each labeled or unlabeled example appears in two
“views”: (a) an ambient view in X in terms of eu-
clidean co-ordinates x and (b) an intrinsic view in G
as a vertex index i. Let HA : X × X → R be an
RKHS defined over the ambient domain with an asso-
ciated kernel kA : X × X → R. We can now combine
ambient and intrinsic views by co-regularizing HA,HI .
This can be done by setting k1 = kA and k2 = kI in
Eqn. 7 and solving Eqn. 6. The combined prediction
function f⋆ given by Eqn. 8 is the mean of an ambient
component f1

⋆ given by Eqn. 9 and an intrinsic compo-
nent f2

⋆ given by Eqn. 10. Even though f⋆ is transduc-
tive and only defined on labeled and unlabeled exam-
ples, the ambient component f1

⋆ can be used for out-
of-sample prediction. Due to co-regularization, this
ambient component is (a) smooth in HX and (b) in
agreement with a smooth function on the data mani-
fold. We call this approach manifold co-regularization,
and abbreviate it as CoMR.

4.2. Manifold Regularization

In the manifold regularization (MR) approach
of (Belkin et al., 2006; Sindhwani et al., 2005a), the
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following optimization problem is solved:

f⋆ = argmin
f∈HA

γ1‖f‖2
HA

+ γ2f
T Mf

+
∑

i∈L

V (yi, f(xi)) (13)

where f = [f(xi), i ∈ L,U ]T . The solution, f⋆ is
defined on X , and can therefore be used for out-of-
sample prediction.

In Figure 2, we show a simple two-dimensional dataset
where MR provably fails when HA is the space of lin-
ear functions on R2. The LINES dataset consists of
two classes spread along perpendicular lines. In MR
the intrinsic regularizer is enforced directly on HA.
It can be easily shown that the intrinsic norm of a
linear function f(x) = wT x along the perpendicular
lines is exactly the same as the ambient norm, i.e.,
‖f‖2

HI
= ‖f‖2

HA
= wT w. Due to this, MR simply ig-

nores unlabeled data and reduces to supervised train-
ing with the regularization parameter γ1 + γ2.

The linear function that gives maximally smooth pre-
dictions on one line also gives the maximally non-
smooth predictions on the other line. One way to
remedy this restrictive situation is to introduce slack
variables ξ = (ξi)i∈L∪U in Eqn. 13 with an ℓ2 penalty,
and instead solve: f⋆ = argminf∈HA,ξ γ1‖f‖2

HA
+

γ2(f + ξ)T M(f + ξ) + µ‖ξ‖2 +
∑

i∈L V (yi, f(xi)).
Re-parameterizing g = f + ξ, we can re-write the
above problem as, f⋆ = argminf∈HA,g∈HI

γ1‖f‖2
HA

+
γ2‖g‖2

HI
+ µ‖f −g‖2 +

∑

i∈L V (yi, f(xi)), which may
be viewed as a variant of the co-regularization prob-
lem in Eqn. 2 where empirical loss is measured for f
alone. Thus, this motivates the view that CoMR adds
extra slack variables in the MR objective function to
better fit the intrinsic regularizer. Figure 2 shows that
CoMR achieves better separation between classes on
the LINES dataset.

Figure 2. Decision boundaries of MR and CoMR (using the
quadratic hinge loss) on the LINES dataset

(a) MR (b) CoMR

4.3. Experiments

In this section, we compare MR and CoMR. Similar to
our construction of the co-regularization kernel, (Sind-
hwani et al., 2005a) provide a data-dependent kernel
that reduces manifold regularization to standard su-
pervised learning in an associated RKHS. We write the
manifold regularization kernel in the following form,

k̃mr(x,z) = s̄(x,z) − d̄T
xH̄d̄z (14)

where we have, s̄ = γ−1
1 k1(x,z), d̄x = γ−1

1 k1
Ux and

H̄ =
(

γ−1
1 K̄1 + γ−1

2 K̄2
)−1

, where K̄1 is the Gram Ma-
trix of k1 = kA over labeled and unlabeled examples,
and K̄2 = M†. We use the notation s̄, d̄, H̄ so that
the kernel can be easily compared with corresponding
quantities in the co-regularization kernel Eqn. 7. In
this section we empirically compare this kernel with
the co-regularization kernel of Eqn. 7 for exactly the
same choice of k1, k2. Semi-supervised classification
experiments were performed on 5 datasets described
in table 1.

Table 1. Datasets with d features and c classes. 10 random
data splits were created with l labeled, u unlabeled, t test,
and v validation examples.

Dataset d c l u t v

LINES 2 2 2 500 250 250
G50C 50 2 50 338 112 50

USPST 256 10 50 1430 477 50
COIL20 241 20 40 1320 40 40
PCMAC 7511 2 50 1385 461 50

The LINES dataset is a variant of the two-dimensional
problem shown in Figure 2 where we added random
noise around the two perpendicular lines. The G50C,
USPST, COIL20, and PCMAC datasets are well
known and have frequently been used for empirical
studies in semi-supervised learning literature. They
were used for benchmarking manifold regularization
in (Sindhwani et al., 2005a) against a number of com-
peting methods. g50c is an artificial dataset gener-
ated from two unit covariance normal distributions
with equal probabilities. The class means are adjusted
so that the Bayes error is 5%. COIL20 consists of
32 × 32 gray scale images of 20 objects viewed from
varying angles. USPST is taken from the test subset
of the USPS dataset of images containing 10 classes
of handwritten digits. PCMAC is used to setup bi-
nary text categorization problems drawn from the 20-
newsgroups dataset.

For each of the 5 datasets, we constructed random
splits into labeled, unlabeled, test and validation sets.
The sizes of these sets are given in table 1. For
all datasets except LINES, we used Gaussian am-
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Table 2. Error Rates (in percentage) on Test Data

Dataset MR CoMR

LINES 7.7 (1.2) 1.0 (1.5)
G50C 5.8 (2.8) 5.5 (2.3)

USPST 18.2 (1.5) 14.1 (1.6)
COIL20 23.8 (11.1) 14.8 (8.8)
PCMAC 11.9 (3.4) 8.9 (2.6)

Table 3. Error Rates (in percentage) on Unlabeled Data

Dataset MR CoMR

LINES 7.5 (1.0) 1.3 (2.0)
G50C 6.6 (0.8) 6.9 (1.0)

USPST 18.6 (1.4) 13.3 (1.0)
COIL20 37.5 (6.0) 14.8 (3.3)
PCMAC 11.0 (2.4) 9.4 (1.9)

bient kernels k1(x,z) = exp(−‖x−z‖2

2σ2 ), and intrin-
sic graph kernel whose gram matrix is of the form
K2 = (Mp + 10−6I)−1. Here, M is the normalized
Graph Laplacian constructed using nn nearest neigh-
bors and p is an integer. These parameters are tabu-
lated in Table 4 for reproducibility. For more details
on these parameters see (Sindhwani et al., 2005a).

We chose squared loss for V (·, ·). Manifold regulariza-
tion with this choice is also referred to as Laplacian
RLS and empirically performs as well as Laplacian
SVMs. For multi-class problems, we used the one-
versus-rest strategy. γ1, γ2 were varied on a grid of
values: 10−6, 10−4, 10−2, 1, 10, 100 and chosen with re-
spect to validation error. The chosen parameters are
also reported in Table 4. Finally, we evaluated the MR
solution and the ambient component of CoMR on an
unseen test set. In Tables 2 and 3 we report the mean
and standard deviation of error rates on test and unla-
beled examples with respect to 10 random splits. We
performed a paired t-test at 5% significance level to as-
sess the statistical significance of the results. Results
shown in bold are statistically significant.

Our experimental protocol makes MR and CoMR ex-
actly comparable. We find that CoMR gives major
empirical improvements over MR on all datasets ex-
cept G50C where both methods approach the Bayes
error rate.

5. Conclusion

In this paper, we have constructed a single, new RKHS
in which standard supervised algorithms are immedi-
ately turned into multi-view semi-supervised learners.
This construction brings about significant theoretical
simplifications and algorithmic benefits, which we have
demonstrated in the context of generalization analysis
and manifold regularization respectively.

Table 4. Parameters Used. Note µ = 1 for CoMR. Linear
kernel was used for LINES dataset.

Dataset nn σ p MR CoMR
γ1, γ2 γ1, γ2

LINES 10 − 1 0.01, 10−6 10−4, 100
G50C 50 17.5 5 1, 100 10, 10

USPST 10 9.4 2 0.01, 0.01 10−6, 10−4

COIL20 2 0.6 1 10−4,10−6 10−6, 10−6

PCMAC 50 2.7 5 10, 100 1, 10
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A. Proof of Theorem 2.2

This theorem generalizes Theorem 5 in (Bertinet &
Thomas-Agnan, 2004).

The Product Hilbert Space We begin by intro-
ducing the product space,

F = H1 ×H2 = {(f1, f2) : f1 ∈ H1, f2 ∈ H2},

and an inner product on F defined by,
〈

(f1, f2), (g1, g2)
〉

F = γ1〈f1, g1〉H1 + γ2〈f2, g2〉H2

+µ
∑

i∈U

(

f1(xi) − f2(xi)
) (

g1(xi) − g2(xi)
)

(15)

It’s straightforward to check that 〈·, ·〉F is a valid inner
product. Moreover, we have the following:

Lemma A.1. F is a Hilbert space.

Proof. (Sketch.) We need to show that F is complete.
Let (f1

n, f2
n) be a Cauchy sequence in F . Then f1

n

is Cauchy in H1 and f2
n is Cauchy in H2. By the

completeness of H1 and H2, we have f1
n → f1 in H1

and f2
n → f2 in H2, for some (f1, f2) ∈ F . Since

H1 and H2 are RKHSs, convergence in norm implies
pointwise convergence, and thus the co-regularization
part of the distance also goes to zero.

H̃ is a Hilbert Space Recall the definition of H̃
in Eqn. 4. Define the map u : F → H̃ by u(f1, f2) =
1
2

(

f1 + f2
)

. The map’s kernel N := u−1(0) is a closed
subspace of F , and thus its orthogonal complement
N⊥ is also a closed subspace. We can consider N⊥

as a Hilbert space with the inner product that is the
natural restriction of 〈·, ·〉F to N⊥. Define v : N⊥ →
H̃ as the restriction of u to N⊥. Then v is a bijection,
and we define an inner product on H̃ by

〈f, g〉H̃ = 〈v−1(f), v−1(g)〉F . (16)

We conclude that H̃ is a Hilbert space isomorphic to
N⊥.

The Co-Regularization Norm Fix any f ∈ H̃,
and note that u−1(f) =

{

v−1(f) + n | n ∈ N
}

. Since
v−1(f) and N are orthogonal, it’s clear by the
Pythagorean theorem that v−1(f) is the element of
u−1(f) with minimum norm. Thus

||f ||2H̃ = ||v−1(f)||2F = min
(f1,f2)∈u−1(f)

||(f1, f2)||2F

We see that the inner product on H̃ induces the norm
claimed in the theorem statement.

We next check the two conditions for validity of an
RKHS (see Definition 2.1).

(a) k̃(z, ·) ∈ H̃ ∀z ∈ X Recall from Eqn. 7 that
the co-regularization kernel is defined as

k̃(x,z) = γ−1
1 k1(x,z) + γ−1

2 k2(x,z)

−µ
(

γ−1
1 k1

Ux − γ−1
2 k2

Ux

)T
βz

where βz = Hdz = (I + µS)
−1 (

γ−1
1 k1

Uz − γ−1
2 k2

Uz

)

.

Define h1(x) = γ−1
1 k1(x,z) − µγ−1

1 k1
Uxβz and

h2(x) = γ−1
2 k2(x,z) + µγ−1

2 k2(x, U)βz. Note that,
h1 ∈ span

{

k1(z, ·), k1(x1, ·), . . . , k1(xu, ·)
}

⊂ H1,

and similarly, h2 ∈ H2. It’s clear that k̃(z, ·) =
[

h1(·) + h2(·)
]

, and thus k̃(z, ·) ∈ H̃.

(b) Reproducing Property For convenience, we
collect some basic properties of h1 and h2 in the fol-
lowing lemma:

Lemma A.2 (Properties of h1 and h2). Writing
h1(U) for the column vector with entries h1(xi) ∀i ∈
U , and similarly for other functions on X , we have the
following:

〈

f1, h1
〉

H1 = γ−1
1 f1(z) − µγ−1

1 f1(U)T βz (17)
〈

f2, h2
〉

H2 = γ−1
2 f2(z) + µγ−1

2 f2(U)T βz (18)

h1(U) − h2(U) = βz (19)

Proof. The first two equations follow from the defini-
tions of h1 and h2 and the reproducing kernel property.
The last equation is derived as follows:

h1(U) − h2(U) =γ−1
1 k1(U,z) − µγ−1

1 k1(U,U)βz

− γ−1
2 k2(U,z) − µγ−1

2 k2(U,U)βz

=dz − µS(I + µS)−1dz

=
(

I − µS(I + µS)−1
)

dz

=(I + µS)
−1

dz = βz

where the last line follows from the Sherman-Morrison-
Woodbury inversion formula.

Since k̃(z, ·) = h1(·) + h2(·), it is clear that (h1, h2) =

v−1
(

k̃(z, ·)
)

+n, for some n ∈ N . Since v−1(f) ∈ N⊥,

we have
〈

f, k̃(z, ·)
〉

H̃
=

〈

v−1(f), v−1(k̃(z, ·))
〉

F
=

〈

v−1(f), (h1, h2) − n
〉

F
=

〈

v−1(f), (h1, h2)
〉

F
=γ1

〈

f1, h1
〉

H1
+ γ2 〈f2, h2〉H2

+ µ
[

h1(U) − h2(U)
]T [

f1(U) − f2(U)
]

=f1(z) + f2(z) − µ
[

f1(U) − f2(U)
]T

βz

+ µ
[

f1(U) − f2(U)
]T

βz (from A.2)

= f(z)


