
Structure Compilation: Trading Structure for Features

Percy Liang pliang@cs.berkeley.edu

Computer Science Division, University of California, Berkeley, CA, USA

Hal Daumé III me@hal3.name

School of Computing, University of Utah, Salt Lake City, UT, USA

Dan Klein klein@cs.berkeley.edu

Computer Science Division, University of California, Berkeley, CA, USA

Abstract

Structured models often achieve excellent
performance but can be slow at test time.
We investigate structure compilation, where
we replace structure with features, which are
often computationally simpler but unfortu-
nately statistically more complex. We an-
alyze this tradeoff theoretically and empir-
ically on three natural language processing
tasks. We also introduce a simple method to
transfer predictive power from structure to
features via unlabeled data, while incurring
a minimal statistical penalty.

1. Introduction

Structured models have proven to be quite effective for
tasks which require the prediction of complex outputs
with many interdependencies, e.g., sequences, segmen-
tations, trees, etc. For example, conditional random
fields (CRFs) can be used to predict tag sequences
where there are strong dependencies between adjacent
tags (Lafferty et al., 2001). In part-of-speech tagging,
for instance, a CRF can easily model the fact that ad-
jectives tend to precede nouns in English. However,
the excellent performance of structured models comes
at a computational cost: inference in loopy graphs re-
quires approximate inference, and even for sequences,
there is a quadratic dependence on the number of tags.

In this paper, we ask a bold question: do we really need
structure? Consider replacing the edges in a CRF with
additional contextual features, i.e., having an indepen-
dent logistic regression (ILR) at each position. A fun-
damental question is whether there is a gap between

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

the expressive power of the ILR and that of the CRF.
Punyakanok et al. (2005) investigated this question
for margin-based models1 and concluded that struc-
ture was not needed when the independent problems
were “easy.” They characterized difficulty in terms of
classifier separability, which is a very rigid notion. In
Section 3.1, we provide an information-theoretic anal-
ysis, decomposing the gap between the ILR and CRF
into three terms, each one representing a shortcoming
of the ILR. The impact of each is investigated empiri-
cally.

Even if the ILR were made as expressive as the CRF
by adding additional features, an important remaining
question is whether the ILR could generalize as well
as the CRF given limited labeled data. Indeed, the
ILR overfits more easily, and we provide generalization
bounds in Section 3.2 to quantify this effect.

At this point, it seems as though we are forced to make
a tradeoff between the computational simplicity of the
ILR and the statistical simplicity of the CRF. How-
ever, we propose structure compilation as a way to
have the best of both worlds. Our strategy is to la-
bel a plethora of unlabeled examples using the CRF
and then train the ILR on these automatically labeled
examples. If we label enough examples, the ILR will
be less likely to overfit. Although training now takes
longer, it is only a one-time cost, whereas prediction
at test time should be made as fast as possible.

Many authors have used unlabeled data to transfer
the predictive power of one model to another, for ex-
ample, from high accuracy neural networks to more
interpretable decision trees (Craven, 1996), or from
high accuracy ensembles to faster and more com-
pact neural networks (Bucilă et al., 2006). Our fo-

1In their case, the independent models are not endowed
with extra features, but coherence of the predictions is en-
forced at test time.

Structure Compilation: Trading Structure for Features

cus is on structured classification tasks, specifically on
studying the tradeoff between structure and features.
We ran experiments on three tasks: part-of-speech
tagging (POS), named-entity recognition (NER), and
constituency parsing (Figure 1).

DT NNP NNP VBD
The European Commission agreed
Part-of-speech tagging (POS)

O B-ORG I-ORG O
The European Commission agreed

Named-entity recognition (NER)

S

NP

DT

The

NN

man

VP

VBD

ate

NP

DT

a

NN

JJ

tasty

NN

sandwich
Parsing

Figure 1. Examples of inputs and their outputs for the
three tasks we experimented on. The input (what’s seen
at test time) is italicized.

2. From Structure to Features

In this section, we will walk through the process of
replacing structure with features, using empirical re-
sults on POS2 and NER3 as running examples. Table 1
summarizes the notation we will use.

2.1. Conditional Random Fields (CRFs)

In structured classification, our goal is to learn to pre-
dict an output y ∈ Y (e.g., a tag sequence, a segmen-
tation, or a parse tree) given an input x ∈ X (e.g., a
sentence). In this paper, we consider conditional expo-
nential family models, which have the following form:

pθ(y | x) = exp{φ(x,y)>θ −A(θ; x)}, (1)

where φ(x,y) are the sufficient statistics (features),
θ ∈ Rd are the parameters, and A(θ; x) =
log
∑

y exp{φ(x,y)>θ} is the log-partition function.

One important type of conditional exponential family
is a conditional random field (CRF) defined on a graph
G = (V,E). In this case, the output y = {yi}i∈V is
a collection of labels, one for each node i ∈ V , with
yi ∈ {1, . . . ,K}. The features include functions over
both nodes and edges:

φ(x,y) =
∑
i∈V

f(yi,x, i) +
∑

(i,j)∈E

g(yi, yj).

2We used the Wall Street Journal (WSJ) portion of the
Penn Treebank, with sections 0–21 as the training set (38K
sentences) and sections 22–24 as the test set (5.5K sen-
tences).

3We used the English data from the 2003 CoNLL Shared
Task, consisting of 14.8K training sentences and 3.5K test
sentences (set A).

In this work, we use a generic set of features for both
POS and NER. The components of the node features
f(yi,x, i) are all indicator functions of the form I[yi =
a, s(xi+o) = b], where a ranges over tags, s(·) ranges
over functions on words,4 b are values in the range of
s(·), and −L ≤ o ≤ L is an offset within a radius L
window of the current position i (we used L = 0 for
POS, L = 1 for NER). The components of the edge
features g(yi, yj) are of the form I[yi = a, yj = b]. Let
f1 denote this base feature set.

Training Suppose we are given n labeled exam-
ples (x(1),y(1)), . . . , (x(n),y(n)), which for the pur-
poses of our theoretical analysis are assumed to be
drawn i.i.d. from some unknown true distribution p∗.
We train the CRF using standard maximum likeli-
hood:5 maxθ Epl(x,y) log p(y | x; θ), where pl(x,y) =
1
n

∑n
i=1 I[x = x(i),y = y(i)] denotes the empirical dis-

tribution of the labeled data. Later, we will consider
other training regimes, so we need to establish some
new notation. Let pc = Tr(crf, f1, p

l) denote the
CRF trained with the base feature set f1 on the la-
beled data.

CRFs achieve state-of-the-art performance on POS
and NER. Using just our generic feature set, we ob-
tain 96.9% tagging accuracy on POS (training with
30K examples) and 85.3% F1 on NER (training with
10K examples). However, the performance does come
at a computational cost, since inference scales quadrat-
ically with the number of tags K. This cost only in-
creases with more complex models.

2.2. Independent Logistic Regression (ILR)

Let us try something drastic: remove the edges from
the CRF to get an independent logistic regression
(ILR), where now φ(x,y) =

∑
i∈V f(yi,x, i). For an

ILR trained on the labeled data with our base feature
set (denoted formally as Tr(ilr, f1, p

l)), inference can
be done independently for each node. For POS, the
ILR takes only 0.4ms to process one sentence whereas
the CRF takes 2.7ms, which is a speedup of 5.8x, not
including the time for precomputing features.6 Unfor-
tunately, the accuracy of POS drops from 96.9% to
93.7%. For NER, F1 drops from 85.3% to 81.4%.

4We used 10 standard NLP functions which return the
word, prefixes and suffixes (up to length 3) of the word,
word signatures (e.g., McPherson maps to AaAaaaaaa and
AaAa), and whether the word is capitalized.

5In our experiments, we ran stochastic gradient for 50
iterations with a 1/(iteration + 3) step-size.

6If we include the time for computing features, the
speedup drops to 2.3x.

Structure Compilation: Trading Structure for Features

2.3. Adding New Features

Without edges, the ILR has less expressiveness com-
pared to the CRF. We can compensate for this loss
by expanding our base feature set. We will use f2 to
denote the expanded feature set.

We use a simple recipe to automatically construct f2

from f1, but in general, we could engineer the features
more carefully for better performance (see the parsing
experiments in Section 4, for example). Essentially,
our recipe is to allow the ILR at node i to use the
base features f1 applied to the nodes in a local win-
dow around i. For the chain CRF, this amounts to
simply increasing the window size from L to L + r
(Section 2.1), where we call r the expansion radius.

For POS, we used an expansion radius of r = 1; for
NER, r = 2. By training with these new features
(Tr(ilr, f2, p

l)), we get 96.8% on POS (compared to
the 96.9% of the CRF), taking 0.8ms per example
(compared to 2.7ms for the CRF). In this case, we
have successfully traded structure for features with a
negligible loss in performance and a 3.4x speedup. For
NER, the story is quite different: adding features ac-
tually makes F1 drop from 81.1% to 78.8%.

We believe there are two reasons for the poor perfor-
mance on NER. First, since NER is a segmentation
problem, the structure plays a more integral role and
thus cannot be easily replaced with features. In other
words, the approximation error of the ILR with respect
to the CRF is higher for NER than POS. Section 3.1
provides a more formal treatment of this matter. Sec-
ond, adding more features increases the risk of over-
fitting. In other words, the estimation error is larger
when there are more features. Section 3.2 analyzes
this error theoretically.

2.4. Using Unlabeled Data

There seems to be a tradeoff between approximation
error and estimation error: More features can provide
a better substitute for structure (decreasing the ap-
proximation error), but at the risk of overfitting the
data (increasing the estimation error).

The algorithmic contribution of this paper is using un-
labeled data to reduce the estimation error of the ILR
via structure compilation. Suppose we have m unla-
beled examples x(1), . . . ,x(m) (which we assume are
also generated from p∗); let pu(x) denote the corre-
sponding empirical distribution. We can use the CRF
pc(y | x) (which has been trained on pl) to label this
unlabeled data. Let pu

c(x,y) = pu(x)pc(y | x) denote
this new plentiful source of labeled data. Instead of
training the ILR on the limited amount of originally

f1 base feature set
f2 expanded feature set
p∗(x,y) true data distribution
pl(x,y) original labeled examples (few)
pc(y | x) = Tr(crf, f1, p

l) [trained CRF]
pc∗(y | x) = Tr(crf, f1, p

∗) [limiting CRF]
pu(x) unlabeled examples (many)
pu
c(x,y) = pu(x)pc(y | x) [labeled with CRF]
p∗c(x,y) = p∗(x)pc(y | x) [labeled with CRF]
pi(y | x) = Tr(ilr, f2, p

u
c) [trained ILR]

pi∗(y | x) = Tr(ilr, f2, p
∗
c) [limiting ILR]

Table 1. Notation used in this paper. In general, super-
scripts denote marginal distributions over x and subscripts
denote conditional distributions over y given x.

labeled data pl, we instead train it on our automati-
cally labeled data pu

c.7

Structure compilation is most useful when there are
few original labeled examples. Figure 2 shows the
performance of a ILR obtained using structure com-
pilation when the CRF is trained on only 2K labeled
examples. We see that using more unlabeled data re-
duces the performance gap between the CRF and ILR
as the estimation error is reduced. For POS, the gap is
closed entirely, whereas for NER, there is a remaining
approximation error.

2 4 8 16 32 64 128 200

m (thousands)

92

94

96

98

100

ta
g

ac
cu

ra
cy

CRF(f1)

ILR(f1)

ILR(f2)

2 4 8 16 32 64 128 200

m (thousands)

68

76

84

92

100

L
ab

el
ed

F
1

CRF(f1)

ILR(f1)

ILR(f2)

(a) POS (b) NER

Figure 2. crf(f1) is the CRF trained using the base fea-
ture set on 2K examples. ilr(f1) is the ILR trained the
same way; performance suffers. However, by using the ex-
panded feature set and training on m examples (New York
Times articles from Gigawords) which are labeled with the
CRF, ilr(f2) can recover all of the performance for POS
and more than half of the performance for NER.

7Strictly speaking, training on pu
c would involve creat-

ing many examples weighted by pc(yi | x) for each origi-
nal x. But since the posteriors are sharply peaked, using
argmaxy pc(y | x) was faster and an adequate approxima-
tion for our applications.

Structure Compilation: Trading Structure for Features

3. Analysis

In this section, we try to get a better understanding
of when structure compilation would be effective. For
the theoretical analysis, we will measure performance
in terms of log-loss (negative cross-entropy):

ε(p1, p2) def= Ep1(x,y)[− log p2(y | x)], (2)

where p1(x,y) is the data generating distribution and
p2(y | x) is the model under evaluation. We will also
use conditional KL-divergence to quantify approxima-
tion error:

κ(p1, p2) def= ε(p1, p2)− ε(p1, p1). (3)

We are interested in ε(p∗, pi), the loss of the final com-
piled ILR. As we will later show in (7), this loss can
be expressed in terms of two parts: (1) ε(p∗, pc), the
loss of the CRF; and (2) κ(pc, pi), the penalty due to
structure compilation.

The CRF loss can be decomposed into approxima-
tion and estimation errors as follows, using telescoping
sums (refer to Table 1 for notation):

ε(p∗, pc) = ε(p∗, pc)− ε(pl, pc)︸ ︷︷ ︸
crf-est-err

+ (4)

ε(pl, pc)− ε(pl, pc∗)︸ ︷︷ ︸
≤0

+

ε(pl, pc∗)− ε(p∗, pc∗)︸ ︷︷ ︸
crf-est-err

+ ε(p∗, pc∗)︸ ︷︷ ︸
crf-apx-err

.

The second term on the RHS is non-positive because
because pc is chosen to minimize log-loss on pl. The
first and third terms are the estimation errors result-
ing from using pl instead of p∗; these will be uniformly
bounded in Section 3.2. Finally, the last term is an ap-
proximation error reflecting the modeling limitations
of the CRF.

The structure compilation penalty can be decomposed
analogously:

κ(p∗c, pi) = κ(p∗c, pi)− κ(pu
c, pi)︸ ︷︷ ︸

ilr-est-err

+ (5)

κ(pu
c, pi)− κ(pu

c, pi∗)︸ ︷︷ ︸
≤0

+

κ(pu
c, pi∗)− κ(p∗c, pi∗)︸ ︷︷ ︸

ilr-est-err

+ κ(p∗c, pi∗)︸ ︷︷ ︸
ilr-apx-err

.

We would now like to combine ε(p∗, pc) and κ(pc, pi)
to get a handle on ε(p∗, pi), but unfortunately, KL-
divergence does not satisfy a triangle inequality. We

can, however, derive the following approximate trian-
gle inequality, where we pay an extra multiplicative
factor (see Appendix A.1 for the proof):
Theorem 1. Consider a conditional exponential fam-
ily P with features φ. Let Θ be a compact subset of
parameters, and define PΘ = {pθ : θ ∈ Θ}. For
any p1, p2 ∈ PΘ and any distribution p0 such that
p′0 = argmaxp∈PEp∗(x)p0(y|x) log p(y | x) ∈ PΘ,

Ep∗(x)KL (p0(y | x) || p2(y | x)) ≤ (6)
α [Ep∗(x)KL (p0(y | x) || p1(y | x)) +

Ep∗(x)KL (p1(y | x) || p2(y | x))],

where α = 2 supθ∈Θ λmax(E varθ(φ|x))

infθ∈Θ λ
+
min(E varθ(φ|x))

. Here, λmax(Σ) and

λ+
min(Σ) are the largest and smallest nonzero eigenval-

ues of Σ, respectively.

Theorem 1 generalizes Lemma 3 of Crammar et al.
(2007) to conditional distributions and the case where
p0 is not necessarily in an exponential family.

Let us apply Theorem 1 with p∗, pc, pi. We then add
the conditional entropy EH(p∗(y | x)) to the LHS of
the resulting inequality and αEH(p∗(y | x)) to the
RHS (note that α ≥ 1), thus obtaining a bound for
the total loss of the final compiled ILR:

ε(p∗, pi) ≤ α(ε(p∗, pc) + κ(p∗c, pi)) (7)
≤ α(crf-apx-err + ilr-apx-err) +

2α(crf-est-err + ilr-est-err).

In the remaining sections, we analyze the various
pieces of this bound.

3.1. Approximation Error

We start by analyzing ilr-apx-err = κ(p∗c, pi∗),
which measures how well the ILR can approximate
the CRF. Specifically, we show that κ(p∗c, pi∗) decom-
poses into three terms, each reflecting a limitation of
the ILR: (1) Ic, the inability to produce a coherent
output; (2) In, the inability to express nonlinearities;
and (3) Ig, the inability to use information about the
input outside a local window. The following theorem
formalizes these concepts (see Appendix A.2 for the
proof):
Theorem 2 (Decomposition of approximation error).
κ(p∗c, pi∗) = Ic + In + Ig, where

Ic = Ep∗(x)KL

(
pc(y | x) ||

∏
i∈V

pc(yi | x)

)
,

In = Ep∗(x)

∑
i∈V

KL (pc(yi | x) || pa∗(yi | x)) ,

Ig = Ep∗(x)

∑
i∈V

KL (pa∗(yi | x) || pi∗(yi | x)) ,

Structure Compilation: Trading Structure for Features

with pa∗ = Tr(ilr, f∞, p∗c), where the node features
f∞ are constructed from f1 with an expansion radius
of ∞ (so the entire input sequence x is used).

Coherence One advantage of structured models is
their ability to predict the output jointly. This could
be especially important for NER, where the output tag
sequence actually codes for a segmentation of the in-
put. Ic measures the information lost by using the
independent marginals of the CRF rather than the
joint.8

For a chain CRF defined on y = (y1, . . . , y`), one can
check that Ic is the sum of mutual information terms
along the edges: Ic = E

∑`−1
i=1 I(yi, yi+1 | x). We

computed Ic empirically: for POS, Ic = 0.003 and
for NER, Ic = 0.009 (normalized by sequence length).
Also, when we predict using the CRF marginals, the
performance drops from 76.3% to 76.0% for NER but
stays at 95.0% for POS. From these results, we con-
clude that coherence is not a big concern for our appli-
cations, although it is slightly more serious for NER,
as we would expect.

Nonlinearities Although we think of CRFs as lin-
ear models, their marginal predictions actually behave
nonlinearly. In captures the importance of this non-
linearity by comparing pc(yi | x) and pa∗(yi | x).
Both depend on x through the same sufficient statistics
f1(·,x, ·), but pa∗ acts on these sufficient statistics in
a linear way whereas pc allows the information about
x to propagate in a nonlinear way through the other
hidden labels y−i = {yj : j 6= i} in a manner roughly
similar to that of a neural network. However, one dif-
ference is that the parameters of pc(yi | x) are learned
with y−i fixed at training time; they are not arbitrary
hidden units in service of yi. A neural network there-
fore offers more expressive power but could be more
difficult to learn.

We would like to measure the effect of nonlinearity
empirically, but pa∗ has too many parameters to learn
effectively. Thus, instead of comparing pa∗ and pc, we
compare pi∗ and a truncated CRF ptc, which we train
as follows:9 For each labeled example (x,y) (which
are sequences of length `), we create ` new examples:
(xi−L−r..i+L+r,yi−r..i+r) for i = 1, . . . , `, where r is
the expansion radius (Section 2.3). Then we train a
CRF with features f1 on these new examples to get
ptc. To label node i, we use ptc(yi | xi−L−r..i+L+r),

8On the other hand, if we evaluate predictions using
Hamming distance, it could actually be better to use the
marginals. In that case, coherence is irrelevant.

9Truncated CRFs are closely related to piecewise-
trained CRFs (Sutton & McCallum, 2005).

marginalizing out yi−r..i−1,i+1..i+r. By this setup,
both ptc(yi | x) and pi∗(yi | x) depend on x through
the same features. Table 2 compares the NER perfor-
mance of ptc and pi. As we can see, the truncated CRF
significantly outperforms the ILR, demonstrating the
power of nonlinearities.

Expansion radius r 1 2 3 ∞
compiled ILR 0.725 0.727 0.721 —
truncated CRF 0.748 0.760 0.762 0.760

Table 2. NER F1 (2K originally labeled examples, 200K
automatically labeled examples for structure compilation)
showing the importance of nonlinearity. Both the ILR and
truncated CRF depend on the input x in the same way,
but only the latter permits nonlinearities.

Global information Ig compares pa∗ and pi∗ , both
of which are independent linear classifiers. The differ-
ence is that pa∗ uses all features of x, while pi∗ uses
only features of x in a local window.

Instead of comparing pa∗ and pi∗ , we compare their
nonlinear counterparts pc and ptc. From Table 2, we
can see that the truncated CRF with just an expan-
sion radius of 2 has the same performance as the origi-
nal CRF (expansion radius∞). Therefore, we suspect
that the features on x outside a local window have
little impact on performance, and that most of the ap-
proximation error is due to lacking nonlinearities.

3.2. Estimation Error

In this section, we quantify the estimation errors for
the CRF and ILR. First, we establish a general result
about the estimation error of log-loss for exponential
families. Our strategy is to uniformly bound the differ-
ence between empirical and expected log-losses across
all parameter values of the exponential family. Our
proof uses covering numbers and is based on Collins
(2001), which derived an analogous result for a 0-1
margin loss.

Assume our parameters and features are bounded:
Θ = {θ : ||θ||2 ≤ B} and R = supx,y ||φ(x,y)||2. The
following theorem relates the difference between em-
pirical and expected log-loss to the number of exam-
ples n (see Appendix for proof):
Theorem 3. For δ > 0, with probability ≥ 1 − δ,
for |ε(p∗, pθ) − ε(pl, pθ)| ≤ η to hold for all θ ∈ Θ, it
suffices to use n = Ω(B4R4 log2 |Y|η−4 log(1/δ)) ex-
amples, where we have suppressed logarithmic factors.

The above result gives uniform convergence of ε(·, ·),
which allows us to bound crf-est-err. In order to
bound ilr-est-err, we need uniform convergence of

Structure Compilation: Trading Structure for Features

κ(·, ·) (5). This requires the convergence of one ad-
ditional term: |ε(pu

c, pc) − ε(p∗c, pc)| P−→ 0 (pc is non-
random in this context). The asymptotics for n in
Theorem 3 therefore remain unchanged.

We now apply Theorem 3 to the CRF and ILR with
the features described in Section 2.1. For both mod-
els, log |Y| = K|V |. Where they differ is on the norms
of the parameters and features (B and R). Let d1 be
the total number of features in the base feature set;
d2, the expanded feature set. Let ck be the number of
nonzero entries in fk(yi,x, i). Natural language pro-
cessing is typified by sparse binary feature vectors, so
dk � ck. For the CRF, ||φ(x,y)||2 is bounded by
R ≤

√
c1|V |2 + |E|2 ≤ √c1|V |+ |E|. The ILR has no

edge potentials so R ≤ √c2|V |. In general, R is small
for NLP applications.

On the other hand, B ∼
√
d1 for the CRF and B ∼√

d2 for the ILR if the magnitude of the individual
parameters are comparable. Since d2 is significantly
larger than d1, the generalization bound for the ILR is
much worse than for the CRF. While comparing upper
bounds is inconclusive, showing that one upper bound
is larger than another via the same methodology is
weak evidence that the actual quantities obey a similar
inequality.

4. Parsing Experiments

We now apply structure compilation to parsing. In
this case, our structured model is a log-linear parser
(Petrov & Klein, 2008), which we would like to replace
with independent logistic regressions. For simplicity,
we consider unlabeled binary trees. We could always
use another independent classifier to predict node la-
bels.

Standard parsing algorithms require O(|G|`3) time to
parse a sentence with ` words, where |G| is the size of
the grammar. The ILR-based parser we will describe
only requires O(`3) time. An extension to the labeled
case would require O(`3 + K`) time, where K is the
number of labels. This is a significant gain, since the
grammars used in real-world parsers are quite large
(|G| � `,K).

4.1. Independent Model

An example parse tree is shown in Figure 1 (recall
that we do not predict the labels). For each span
(i, j) (1 ≤ i < j ≤ `), the independent model pre-
dicts whether a node in the parse tree dominates the
span. For example, of the 14 non-trivial spans in the
sentence in Figure 1, the positively labeled spans are

(1, 2), (5, 6), (4, 6), and (3, 6). To parse a sentence
at test time, we first use the independent model to
assign each span a probability and then use dynamic
programming to find the most likely tree.

The independent model uses the following features
evaluated (a) within the span, (b) at the boundary
of the span, and (c) within a window of 3 words on
either side of the span: identity, parts-of-speech, pre-
fixes/suffixes (length 1-3), and case patterns. Addi-
tional features include 3- and 4-grams of the words and
POS tags that occur within the span; the entire POS
sequence; the entire word sequence; the 3-character
suffix sequence; the case sequence within the span; the
length of the span; the position of the span relative to
the entire sentence; the number of verbs, conjunctions
and punctuation marks within the span; and whether
the span centers on a conjunction and has symmetric
POS tags to the left and right.

4.2. Results

In all of our experiments, we evaluate according to the
F1 score on unlabeled, binarized trees (using right-
binarization). This scoring metric is slightly non-
standard, but equally difficult: a parser that achieves
a labeled F1 (the usual metric) of 89.96% on the Tree-
bank test data (section 23) achieves 90.29% under our
metric; on 10% of the data, the two metrics are 82.84%
and 85.16%, respectively.

To test our independent parser, we trained a struc-
tured parser on 10% of the WSJ portion of the Penn
Treebank (4K sentences). We then used the structured
parser to parse 160K unlabeled sentences,10 which
were then used, along with the original 4K sentences,
to train the independent model. Figure 3(a) shows
the F1 scores of the various models. When only 4K
is used, the independent parser achieves a score of
79.18%, whereas the structured parser gets 85.16%.
With more automatically labeled examples, the per-
formance of the independent parser approaches that of
the structured parser (84.97% with 164K sentences).

On the other hand, if we trained the structured parser
on 40K sentences, then the independent parser has a
much harder time catching up, improving from 85.42%
(40K sentences) to just 87.57% (360K sentences) com-
pared to the structured parser’s 90.78% (Figure 3(b)).
Since parsing is a much more complex task compared
to POS or NER, we believe that richer features would
be needed to reduce this gap.

10These sentences are from the North American National
Corpus, selected by test-set relativization.

Structure Compilation: Trading Structure for Features

4 14 24 44 84 164

m (thousands)

77

80

82

85

87

U
nl

ab
el

ed
F

1

Structured
Independent

40 50 60 80 120 200 360

m (thousands)

86

87

89

90

92

U
nl

ab
el

ed
F

1

Structured
Independent

(a) 4K sentences (b) 40K sentences

Figure 3. A comparison of the structured and indepen-
dent parsers when the structured parser is trained on 4K
(a) and 40K (b) sentences. m is the number of examples
(original + automatically labeled) used to train the inde-
pendent parser.

5. Conclusion

The importance of deploying fast classifiers at test
time motivated our investigation into the feasibility
of replacing structure with features. We presented a
method to compile structure into features and con-
ducted theoretical and empirical analyses of the esti-
mation and approximation errors involved in structure
compilation. We hope that a better understanding of
the role structure plays will lead to more computation-
ally efficient methods that can still reap the benefits
of structure.

References

Bucilă, C., Caruana, R., & Niculescu-Mizil, A. (2006).
Model compression. International Conference on Knowl-
edge Discovery and Data Mining (KDD).

Collins, M. (2001). Parameter estimation for statistical
parsing models: Theory and practice of distribution-free
methods. International Workshop on Parsing Technolo-
gies.

Crammar, K., Kearns, M., & Wortman, J. (2007). Learning
from multiple sources. Advances in Neural Information
Processing Systems (NIPS).

Craven, M. W. (1996). Extracting comprehensible mod-
els from trained neural networks. Doctoral dissertation,
University of Wisconsin at Madison.

Csiszár, I., & Shields, P. (2004). Information theory and
statistics: A tutorial. Foundations and Trends in Com-
munications and Information Theory, 1, 417–528.

Lafferty, J., McCallum, A., & Pereira, F. (2001). Condi-
tional random fields: Probabilistic models for segment-
ing and labeling data. International Conference on Ma-
chine Learning (ICML).

Petrov, S., & Klein, D. (2008). Discriminative log-linear
grammars with latent variables. Advances in Neural In-
formation Processing Systems (NIPS).

Pollard, D. (1984). Convergence of stochastic processes.
Springer-Verlag.

Punyakanok, V., Roth, D., Yih, W., & Zimak, D. (2005).
Learning and inference over constrained output. Inter-
national Joint Conference on Artificial Intelligence (IJ-
CAI).

Sutton, C., & McCallum, A. (2005). Piecewise training of
undirected models. Uncertainty in Artificial Intelligence
(UAI).

Zhang, T. (2002). Covering number bounds of certain
regularized linear function classes. Journal of Machine
Learning Research, 2, 527–550.

A. Proofs

Lemma 1 gives conditions under which a conditional
KL-divergence can be decomposed exactly. Lemma 2
specializes to the exponential family. These lemmas
are variants of standard results from information ge-
ometry (see Csiszár and Shields (2004)). We will use
them in the proofs of Theorems 1 and 2.

Lemma 1 (Conditional Pythagorean identity). Let
d(p, p′) = Ep∗(x)p(y|x) log p′(y | x) be the negative
conditional cross-entropy. For any three conditional
distributions p0, p1, p2, if d(p0, p1) = d(p1, p1) and
d(p0, p2) = d(p1, p2), then

Ep∗(x)KL (p0(y | x) || p2(y | x)) = (8)
Ep∗(x)KL (p0(y | x) || p1(y | x)) +
Ep∗(x)KL (p1(y | x) || p2(y | x)) .

Proof. Use the fact that Ep∗(x)KL (p || p′) = d(p, p) −
d(p, p′) and perform algebra.

Lemma 2 (Conditional Pythagorean identity for ex-
ponential families). Let P be a conditional exponential
family. If p1 = argmaxp∈PEp∗(x)p0(y|x) log p(y | x)
and p2 ∈ P, (8) holds for p0, p1, p2.

Proof. Since p1 is the maximum likelihood solution,
µ

def= Ep∗(x)p0(y|x)φ(x,y) = Ep∗(x)p1(y|x)φ(x,y), where
φ are the features of P. Then for p ∈ P with param-
eters θ, d(p0, p) = µ>θ − EA(θ; x) = d(p1, p) (follows
from (1)). Plug in p = p1, p2 and apply Lemma 1.

A.1. Proof of Theorem 1

Proof. The first part of the proof is similar to that
of Lemma 3 in Crammar et al. (2007). Denote
k(p, p′) = Ep∗(x)KL (p(y | x) || p′(y | x)) and B(θ) =
Ep∗(x)A(θ; x).

The key is to note that for p, p′ ∈ P, the condi-
tional KL-divergence is the residual term in the first-
order approximation of B: k(p, p′) = ∇B(θ)>(θ −
θ′) − (B(θ) − B(θ′)), where θ, θ′ are the parameters
of p, p′. Thus, we can use Taylor’s theorem to get that

Structure Compilation: Trading Structure for Features

k(p, p′) = 1
2 ||θ − θ′||2Vp,p′ , where Vp,p′ = ∇2B(θ̃) =

E varθ̃(φ | x) for some θ̃ ∈ Θ.

One can check that ||θ′0 − θ2||2V0,2
≤ 2[||θ′0 − θ1||2V0,2

+
||θ1− θ2||2V0,2

], where V0,2 = Vp′0,p2 . By definition of α,
V0,2 � α

2 V0,1 and V0,2 � α
2 V1,2,11 so ||θ′0 − θ2||2V0,2

≤
α[||θ′0 − θ1||2V0,1

+ ||θ1 − θ2||2V1,2
]. Rewritten another

way: k(p′0, p2) ≤ α[k(p′0, p1) + k(p1, p2)].

Applying Lemma 2 twice to p0, p
′
0, p1 and p0, p

′
0, p2

yields k(p0, p2) − k(p0, p
′
0) ≤ α[k(p0, p1) − k(p0, p

′
0) +

k(p1, p2)]. Subtracting k(p0, p
′
0) from both sides and

noting α ≥ 1 yields the theorem.

A.2. Proof of Theorem 2

Proof. Define pmc(y | x) =
∏
i∈V pc(yi | x). Check

that d(pc(y | x),
∏
i∈V p(yi | x)) = d(

∏
i∈V pc(yi |

x),
∏
i∈V p(yi | x)) for any p, in particular, pmc and

pi∗ . Thus we can apply Lemma 1 with pc, pmc, pi∗ to
get κ(p∗c, pi∗) = Ic + Ep∗(x)KL (pmc(y | x) || pi∗(y | x)).

Since f∞ is a superset of f2, both pi∗ and pa∗ are mem-
bers of the f∞-exponential family, with pa∗ being the
maximum likelihood solution. Apply Lemma 2 with
pmc, pa∗ , pi∗ to get Ep∗(x)KL (pmc(y | x) || pi∗(y | x)) =
In + Ig.

A.3. Proof of Theorem 3

We use covering numbers to bound the complexity of
the class of log-losses. Our proof is inspired by Collins
(2001), who works with a 0-1 margin-based loss. De-
fine the loss class:

M def= {(x,y) 7→ − log pθ(y | x) : θ ∈ Θ} . (9)

We first show that the elements of M are bounded:

Lemma 3. For each f ∈M and (x,y), 0 ≤ f(x,y) ≤
L, where L def= BR(1 + log |Y|).

Proof. The lower bound holds since probabilities are
bounded above by 1. For the upper bound, consider
the absolute value of the two terms in (1) separately.
For the linear term, |φ(x,y)>θ| ≤ BR by the Cauchy-
Schwartz inequality. The log-partition function can
be bounded by BR log |Y| by applying the linear term
result to the exponent. Add the two bounds.

Theorem 1 of Zhang (2002) (originally due to Pollard

11It suffices to consider nonzero eigenvalues because
zero eigenvalues correspond to non-identifiable directions,
which are the same for all parameters θ.

(1984)) applied to M: With probability ≥ 1− δ,

P

(
sup
θ∈Θ
|ε(p∗, pθ)− ε(pl, pθ)| > η

)
(10)

≤ 8N1(M, η/8, n) exp
{
−nη2

128L2

}
,

where Np(F , ε, n), the covering number of function
class F , is the supremum over all points z1, . . . , zn,
of the size of the smallest cover {g1, . . . , gk} such that
for all f ∈ F , there exists a gj in the cover with
(1
n

∑n
i=1 |f(zi)− gj(zi)|p)1/p ≤ ε.

We now upper bound N∞(M, ε/8, n), adapting the
method used in Collins (2001). First define the set of
linear functions:

L def=
{
v 7→ θ>v : θ ∈ Θ

}
. (11)

Theorem 4 of Zhang (2002) (with p = q = 2) allows us
to bound the complexity of this class:

log2N∞(L, ε, n) (12)
≤ 36(BR/ε)2 log2(2d4BR/ε+ 2en+ 1).

We now relate the covering numbers of L and M:
Lemma 4. N∞(M, ε, n) ≤ N∞(L, ε/2, n|Y|).

Proof. Let S = {(x(1),y(1)), . . . , (x(n),y(n))}. We will
construct a covering of M (with respect to S) by re-
ducing to the problem of finding a covering of L. Let
viy = φ(x(i),y) and V = {viy : i = 1, . . . , n,y ∈ Y}.
By (12), we can cover L with respect to V with a set
CL. Consider the corresponding set CM ⊂ M (note
the natural 3-way bijections between Θ, L, and M).

To prove the lemma, it suffices to show that CM is a
covering of M. Fix some g ∈ M, which is associated
with some f ∈ L and θ ∈ Θ. There exists a f̃ ∈ CL
(corresponding to a θ̃ ∈ Θ and a g̃ ∈ CM) such that
|f(x,y)− f̃(x,y)| = |θ>φ(x,y)− θ̃>φ(x,y)| ≤ ε/2 for
all (x,y) ∈ S and y ∈ Y. We now argue that g̃ is close
to g. For each (x,y) ∈ S,

g(x,y) = − log pθ(y | x)

= −θ>φ(x,y) + log
∑
y′∈Y

eθ
>φ(x,y′)

≤ −(θ̃>φ(x,y)− ε/2) + log
∑
y′∈Y

eθ̃
>φ(x,y′)+ε/2

= g̃(x,y) + ε.

Similarly, g(x,y) ≥ g̃(x,y) − ε. Therefore, CM is a
cover of M.

Substitute (12) into Lemma 4 to get an expression for
N∞(M, ε, n); substitute that into (10), using the fact
that N1 ≤ N∞. Solving for n yields the theorem.

