
On the Hardness of Finding Symmetries in Markov Decision Processes

Shravan Matthur Narayanamurthy SHRAVANMN@GMAIL.COM

Yahoo! Labs, Bangalore

Balaraman Ravindran RAVI@CSE.IITM.AC.IN

Dept. of Comp. Sci. and Engg., Indian Institute of Technology Madras, Chennai

Abstract
In this work we address the question of find-
ing symmetries of a given MDP. We show that
the problem is Isomorphism Complete, that is,
the problem is polynomially equivalent to veri-
fying whether two graphs are isomorphic. Apart
from the theoretical importance of this result it
has an important practical application. The re-
duction presented can be used together with any
off-the-shelf Graph Isomorphism solver, which
performs well in the average case, to find sym-
metries of an MDP. In fact, we present results
of using NAutY (the best Graph Isomorphism
solver currently available), to find symmetries of
MDPs.

1. Introduction

Markov Decision Processes (MDPs) are widely employed
to model sequential decision problems. But current solu-
tion techniques for MDPs do not scale well with the size
of the MDPs, and hence are proving inadequate in solving
large real-world problems. While building abstract models
of real-world problems, it can be seen that a high degree of
redundancy is present which can be exploited to reduce size
of the model. This reduction in size could possibly lead to
more efficient solution methods.

One such notion of redundancy is a degree of symmetry
that is present in any real-world problem. (Amarel, 1968)
first looked at exploiting such symmetries in solving a mis-
sionaries and cannibals problem. In this work we use the
notion of symmetries in MDPs introduced in (Ravindran,
2004). While it is widely believed that finding symmetries
in MDPs is a hard problem, no one has investigated before
exactly how hard this problem is.

Intuitively this seems harder than finding symmetries in

Appearing in Proceedings of the 25th International Conference on
Machine Learning, Helsinki, Finland, 2008. Copyright 2008 by
the author(s)/owner(s).

graphs, due to the additional structure introduced by MDPs.
In this work we show that finding symmetries in MDPs is
no harder than the problem of graph isomorphism. We also
show that existing graph isomorphism solvers can be used
to find symmetries in MDPs.

We present some notation in the next section, and some re-
lated work in Section 3. In Section 4 we formally define
the problem, and present a constructive algorithm in Sec-
tion 5 for showing the equivalence to graph isomorphism.
We discuss some results Section 6 and conclude in Section
7.

2. Homomorphisms and Symmetry Groups

Let B be a partition of a set X. For any x ∈ X, [x]B denotes
the block of B to which x belongs. Any function f from a
set X to a set Y induces a partition (or equivalence relation)
on X, with [x] f = [x′] f if and only if f (x) = f (x′) and
x, x′ are f -equivalent written x ≡ f x′. Let B be a partition
of Z ⊆ X × Y, where X and Y are arbitrary sets. The
projection of B onto X is the partition B|X of X such that
for any x, x′ ∈ X, [x]B|X = [x′]B|X if and only if every block
containing a pair in which x is a component also contains a
pair in which x′ is a component or every block containing
a pair in which x′ is a component also contains a pair in
which x is a component.
Definition 1. An MDP homomorphism h from an MDP
M = 〈S,A,Ψ,P,R〉 to an MDPM′

= 〈S′,A′,Ψ′,P′,R′〉
is a surjection from Ψ to Ψ′, defined by a tuple of surjec-
tions < f , {gs|s ∈ S} >, with h((s, a)) = (f (s), gs(a)), where
f : S → S′ and gs : As → A′f (s) for s ∈ S, such that:
∀s, s′ ∈ S, a ∈ As

P′(f (s), gs(a), f (s′)) =

∑

s′′∈[s′] f

P(s, a, s′′) (1)

R′(f (s), gs(a)) = R(s, a) (2)

We use the shorthand h(s, a) for h((s, a)). Often for conve-
nience, we use < f , {gs} > to denote
< f , {gs|s ∈ S} >.

On the Hardness of Finding Symmetries in MDPs

Definition 2. Let M’ be an image of the MDP M under
homomorphism h =< f , {gs} >. For any s ∈ S, g−1

s (a′) de-
notes the set of actions that have the same image a′ ∈ A′f (s)
under gs. Let π′ be a stochastic policy in M′. Then
π′ lifted to M is the policy πM′ such that for any a ∈
g−1

s (a′), π′
M

(s, a) = π′(f (s), a′)/|g−1
s (a′)|

Definition 3. An MDP homomorphism h =< f , {gs} >
from MDP M = 〈S,A,Ψ,P,R〉 to MDP M′

=

〈S′,A′,Ψ′,P′,R′〉 is an MDP isomorphism fromM toM′

if and only if f and gs, are bijective. M is said to be iso-
morphic toM′ and vice versa. An MDP isomorphism from
MDPM to itself is called an automorphism ofM.
Definition 4. The set of all automorphisms of an MDPM,
denoted by AutM, forms a group under composition of
homomorphisms. This group is the symmetry group ofM.

Let G be a subgroup of AutM. The image ofM under G
is called the G-reduced image ofM.
Definition 5. An MDPM′ is said to be a reduced model
of an MDP M, iff there exists an MDP homomorphism
h :M→M′.

3. Related Work

MDP Minimization is a well studied problem. As stated
earlier, in the model minimization approach, a reduced
MDP that that preserves some key properties as the orig-
inal MDP is found by combining “equivalent” states. The
reduced MDP found depends on the notion of equivalence
between states used in the aggregation. The notion of
equivalence chosen will be fundamental in designing and
analyzing algorithms for reducing MDPs. In (Dean & Gi-
van, 1997) a minimization algorithm is proposed based on
the notion of stochastic bi-simulation homogeneity. Infor-
mally, a partition of the state space for an MDP is said
to be homogeneous if for each action, states in the same
block have the same probability of transitioning to each
other block. They also provide an algorithm for finding
the coarsest homogeneous refinement of any partition of
the state space of an MDP. The algorithm starts with an
initial partition P0 and iteratively refines it by splitting the
blocks until the coarsest homogeneous refinement of P0 is
obtained. A notion of stability of a block with respect to an-
other is defined and unstable blocks are split till all blocks
of the partition are stable. The complexity of the algorithm
is expressed in terms of the partition manipulation opera-
tions. Hence, the actual complexity depends on the under-
lying partition representation and manipulation algorithms.
(Givan et al., 2003) discuss the application of the algorithm
to solving factored MDP problems. Enumerating the state
space is avoided by describing large blocks of equivalent
states in factored form with the block descriptions being
inferred directly from the original factored representation.

(Ravindran, 2004) proposes a more generic framework
based on the notion of MDP homomorphisms with state-
dependent action recoding as introduced in Section 2. This
allows a greater reduction in problem size and aids in mod-
eling many other notions of equivalence like symmetries. A
polynomial time algorithm to find the reduced model under
the notion of MDP homomorphisms is also proposed by
extending the algorithm proposed by (Givan et al., 2003)
and (Lee & Yannakakis, 1992). Again, the algorithm is
polynomial in the number of block operations, the stability
criterion is modified to suit the equivalence notion and the
same process of iterative splitting is used. The notion of
stability used is called the stochastic substitution property,
which is an extension of the substitution property for finite
state machines (Hartmanis, 1966).

However, literature on MDP minimization using symme-
tries is sparse. (Zinkevich & Balch, 2001) define symme-
tries based on state-action equivalence but do not make any
connections to group-theoretic concepts or minimization
algorithms.

Another dimension to analyze the literature is the approach
to symmetry finding. Two main approaches exist:

1. To derive a set of necessary conditions for elements to
be symmetric

2. Prove Isomorphism Completeness and use a graph
isomorphism finding system

Intuitively symmetries seem easier to identify than homo-
morphisms and we tried the first approach to find a polyno-
mial time algorithm for symmetry finding, along the lines
of the MDP homomorphism finding, with the motivation of
finding better algorithms for MDP minimization. The MDP
homomorphism definition allows for deriving this easily
because, two state action pairs (s1, a1), (s2, a2) are homo-
morphically equivalent if

h(s1, a1) = h(s2, a2)
P′(f (s1), gs1 (a1), f (s′)) = P′(f (s2), gs2 (a2), f (s′))

T(s1, a1, [s′]Bh |S) = T(s2, a2, [s′]Bh |S)

for all s′ ∈ S. This is the stochastic substitution property
and it allows us to deal just with blocks without worry-
ing about the actual functions. However, a similar attempt
for symmetries still needs the symmetry f in the necessary
condition as below:

h(s1, a1) = (s2, a2)
P(f (s1), gs1 (a1), f (s′)) = P(s2, a2, f (s′))

P(s1, a1, s′) = P(s2, a2, f (s′))

(Flener et al., 2002) and (Crawford, 1992) point that sym-
metry finding for CSPs in general is Isomorphism Com-

On the Hardness of Finding Symmetries in MDPs

plete. However, there also exist results showing that sym-
metry finding is NP-complete (in case of geometric auto-
morphism of graphs (Manning, 1990)). So we were still un-
clear whether symmetry finding for MDPs is Isomorphism
Complete or NP-complete due to the presence of factorially
many action recoding functions. A better understanding of
the use of symmetries for abstraction in MDPs is the moti-
vation for this work.

4. Problem Definition

To exploit the power of abstraction using symmetries, we
identify them and construct a reduced model by abstract-
ing away the symmetric portions. As the reduced model
can be significantly smaller, it can be easier to solve. We
use the notion of automorphisms to model symmetries. So
formally, given an MDPM,

1. Find the automorphism group, AutM and

2. Given the automorphism group, AutM find the corre-
sponding reduced model, the AutM-Reduced Image

5. Finding Symmetries

5.1. Problem Simplification

Let us consider the first part of our problem, i.e., given an
MDPM, find the automorphism group ofM, AutM. We
know that a group can be specified using its generators.
So we simplify the problem to finding the generators of
AutM. Let AMGEN(M) denote the problem of finding
the generators of AutM. We write A ∝ B if a problem A is
polynomially reducible to B. We say that problems A and
B are polynomially equivalent iff A ∝ B and B ∝ A. We
denote polynomial equivalence by ≡∝.
Definition 6. A problem A is Isomorphism Complete iff A
is polynomially equivalent to finding whether two graphs
are isomorphic.

Let G1,G2 be two simple graphs unless otherwise men-
tioned. The following is a list of relevant Isomorphism
Complete problems (Booth & Colbourn, 1977) on graphs:

• ISO(G1,G2): Isomorphism recognition for G1 and G2

• IMAP(G1,G2): Isomorphism Map from G1 to G2(if it
exists),

• AGEN(G1): Generators of the automorphism group,
AutG1

• DGEN(G): Generators of the automorphism group,
AutG, where G is a weighted digraph

From (Mathon, 1979), (Read & Corneil, 1977), (Miller,
1977) we have,
DGEN(G) ≡∝ AGEN(G) ≡∝ IMAP(G1,G2) ≡∝
ISO(G1,G2).
We intend to prove that AMGEN(M) is Isomorphism
Complete. We are done if we prove that AMGEN(M) ≡∝
DGEN(GM), where GM is a weighted graph constructed
in polynomial time from M, that is, AMGEN(M) ∝
DGEN(GM) and DGEN(GM) ∝ AMGEN(M). It is easy
to see that DGEN(GM) ∝ AMGEN(M) is true because we
can always construct a degenerate MDP from a digraph. So
we need to prove that AMGEN(M) ∝ DGEN(GM).

5.2. Isomorphism Completeness of the problem

An MDPM can be considered as a pseudograph with states
acting as vertices and actions acting as edges. Since there
can be more than one action affecting the transition be-
tween 2 states, we need to represent this as a pseudograph.
The transition probabilities and rewards can be thought of
as weight functions. Next, we formally pose AMGEN(M)
as a problem on a weighted pseudograph.

Let GM =< Σa,V,E,WP,WR > be the pseudograph corre-
sponding toM, where

Σa : Alphabet for labelling corresponding
to actions

V : Set of vertices corresponding to states
E : Set of edges, where each edge is a triple

(u, a, v) where, u, v ∈ V and a ∈ Σa

corresponding to state transitions

WP : E→ R corresponding to transition
probabilities

WR : E→ R corresponding to rewards with
WR(u, a, v) =WR(u, a, v′)
∀ (u, a, v), (u, a, v′) ∈ E

Note, E =

⋃

u,v∈V
Euv where, Euv = { (u′, a, v′) ∈ E

| u′ = u and v′ = v }

AMGEN(M) can be formulated as finding the generators
of the group of bijections h : V×Σa → V×Σa. h is defined
by h(u, a) = (f (u), gu(a)), where

f : V → V and
gu : Σa → Σa defined for each

u ∈ V are bijections s. t.
WP(f (u), gu(a), f (v)) = WP(u, a, v) and
WR(f (u), gu(a), f (v)) = WR(u, a, v) ∀ (u, a, v) ∈ E

On the Hardness of Finding Symmetries in MDPs

These two components of each generator can be interpreted
as follows:

1. f is a function that permutes the states/vertices

2. The set of functions {gu} defined for each state/vertex
permutes the actions/edge labels. These are called the
State-Dependent Action Recoding (SDAR) functions.

5.2.1. SET BIJECTIONS

Let us assume, for a moment, that we have a procedure that
constructs a weighted digraph WDM from GM. Now, solv-
ing DGEN(WDM) gives the generators of WDM. Even if
these were somehow same as the f s we are looking for, we
still need a way to find the SDAR functions. To achieve
this, we define the notion of a set bijection which repre-
sents a set of bijections very compactly. In the worst case,
for each f , there can be factorially many SDAR functions.
So a normal explicit representation cannot be used. We
also define the operations of intersection between two set
bijections to find the bijections that are common to both
set bijections, composition between two set bijections and
an inverse of a set bijection. All these operations can be
done in time polynomial of the number of elements in the
domain of a bijection belonging to the set bijection.
Definition 7. Consider two finite sets A and B. Let UA =
{UA1 ,UA2 , . . . ,UAk } and UB = {UB1 ,UB2 , . . . ,UBk } be par-
titions of A and B respectively. UA and UB are said to be
similar iff |UA| = |UB| and for each UAi ∈ UA there exists
a unique UB j ∈ UB such that |UAi | = |UB j |. We denote it by
UA ∼ UB.

Note that, by definition the sets A and B will be of the same
size.
Definition 8. Let A and B be two finite sets and UA =
{UA1 ,UA2 , . . . ,UAk } and UB = {UB1 ,UB2 , . . . ,UBk } be par-
titions of A and B respectively such that UA ∼ UB. A
bijective map X : UA → UB where X(UAi) = UB j implies
|UAi | = |UB j | for all UAi ∈ UA is called a set bijection.

Informally, a set bijection can be interpreted as represent-
ing a set of bijections from A to B. X(UAi) = UB j repre-
sents all possible bijective mappings from elements in UAi

to elements in UB j . A bijection from A to B in the set of
bijections that represent the set bijection, can be formed by
collating mappings from each X(UAi) = UB j . The set bi-
jection represents all mappings that can be formed by such
collations. To formalize this notion, we define the interpre-
tation function next.

Let XAB , { all bijections X : UA → UB such that UA
and UB are similar partitions of A and B respectively } be
the set of all set bijections. Let 2S|V| be the powerset set of
all permutations from A → B. Define, Î : XAB → 2S|V|

such that Î(X : UA → UB) = { all bijections l : A →
B | l(x ∈ UAi) ∈ X(UAi) ∀UAi ∈ UA}. Evidently, Î is
only injective and not surjective as there exist sets of 2S|V|

that cannot be represented by a set bijection. For example,
consider the set of bijections, between {a, b, c} and {1, 2, 3},
L = {(a → 1, b → 2, c → 3), (a → 2, b → 1, c → 3), (a →
2, b → 3, c → 1)}. Clearly there does not exist an X :
UA → UB such that Î(X) = L. All we can say is that
there exists an X such that L ⊂ Î(X). To get a bijective
interpretation function, we define, I : XAB → image(Î)
such that I(X : UA → UB) = Î(X : UA → UB). Clearly I is
a bijection and we call this the interpretation function.
Definition 9. Let A be a finite set and let U1

A =

{U1
A1
,U1

A2
, . . . ,U1

Ak
}, U2

A = {U2
A1
,U2

A2
, . . . ,U2

Ak
} be two

partitions of A such that, U1
A ∼ U2

A. We define the intersec-
tion of two similar partitions of a finite set as U1

A ∩ U2
A =

{U1
Ai
∩U2

A j
| U1

Ai
∈ U1

A,U2
A j
∈ U2

A and U1
Ai
∩U2

A j
, ∅}.

Definition 10. Let A and B be two finite sets and U1
A =

{U1
A1
,U1

A2
, . . . ,U1

Ak
}, U2

A = {U2
A1
,U2

A2
, . . . ,U2

Ak
} be two

partitions of A and U1
B = {U1

B1
,U1

B2
, . . . ,U1

Bk
}, U2

B =

{U2
B1
,U2

B2
, . . . ,U2

Bk
} be two partitions of B. Also let U1

A ∼

U1
B and U2

A ∼ U2
B. Let two set bijections X1 and X2 be

defined from U1
A to U1

B and from U2
A to U2

B respectively. If
(U1

A∩U2
A) ∼ (U1

B∩U2
B), we define the intersection between

the two set bijections X = X1 ∩ X2 as follows: ∀U1
Ai
∈

U1
A,U2

A j
∈ U2

A such that U1
Ai
∩ U2

A j
, ∅, X(U1

Ai
∩ U2

A j
) =

X1(U1
Ai

) ∩ X2(U2
A j

). Note that, X : U1
A ∩ U2

A → U1
B ∩ U2

B
and it can be shown that I(X) = I(X1) ∩ I(X2).
Definition 11. Let A be a finite set. Let U1

A =

{U1
A1
,U1

A2
, . . . ,U1

Ak
}, U2

A = {U2
A1
,U2

A2
, . . . , U2

Ak
} be two

similar partitions of A. Let X be a set bijection defined
from U1

A to U2
A. We define the inverse of X as X−1 : U2

A →

U1
A such that X−1(U2

Ai
) = U1

A j
iff X(U1

A j
) = U2

Ai
.

Definition 12. Let A, B and C be three finite sets and
UA = {UA1 ,UA2 , . . . ,UAk }, UB = {UB1 ,UB2 , . . . ,UBk } and
UC = {UC1 ,UC2 , . . . ,UCk } be partitions of A, B and C re-
spectively . Also let UA, UB and UC be pairwise similar
to each other. Let two set bijections X1 and X2 be defined
from UB to UC and UA to UB respectively. We define the
composition of X1 and X2, X = X1 � X2 as the set bijec-
tion from UA to UC defined by X(UAi) = X1(X2(UAi)), for
each UAi ∈ UA. It can be shown that for each l ∈ I(X) there
exist, l1 ∈ I(X1) and l2 ∈ I(X2) such that l = l1 ◦ l2 where ◦
denotes normal function composition.

5.2.2. VECTOR-WEIGHTED DIGRAPH

We assume that Σa can be ordered and let O be such an
ordering.

Without loss of generality, we can assume that |Euv| =

On the Hardness of Finding Symmetries in MDPs

k,∀u, v ∈ V because, we can always take maxu,v∈V |Euv| = k
and if ∃u, v ∈ V such that (u, a, v) ∈ E for some a ∈ Σa
and |Euv| < k, then add dummy labels (chosen from the re-
maining labels in Σa) and zero weights to make |Euv| = k.
This corresponds to the general assumption in MDPs that
|As| = k, ∀s ∈ S.

Let < a1, a2, . . . , ak > ordered as per O be the k-tuple repre-
senting the label of each edge in Euv. This being the same
for all edges, we leave out labeling from the graph defini-
tion.

Now we define the vector-weighted digraph corresponding
toM, VWGM =< V,E′,WP,WR >, as follows:

E′ = {(u, v) | ∃a ∈ Σa and (u, a, v) ∈ E}
WP : E′ → R

k defined by
WP(u,v) =<WP(u, a1, v), . . . ,WP(u, ak, v) >

WR : E′ → R
k defined by

WR(u,v) =<WR(u, a1, v), . . . ,WR(u, ak, v) >

where a1, a2, . . . , ak are ordered as per O.

5.2.3. SORTED VECTOR-WEIGHTED DIGRAPH

We define the sorted vector-weighted digraph,
SVWGM =< V,E′,WPs ,WRs >, as follows:

WPs : E′ → R
k defined by

WPs (u,v) =<WP(u, puv(1), v), . . . ,WP(u, puv(k), v) >
where, puv : Nk → Σa such that

WP(u, puv(1), v) ≤ . . . ≤WP(u, puv(k), v)

WRs : E′ → R
k defined by

WRs (u,v) =<WR(u, ruv(1), v), . . . ,WR(u, ruv(k), v) >
where, ruv : Nk → Σa such that

WR(u, ruv(1), v) ≤ . . . ≤WR(u, ruv(k), v)
Note that, puv and ruv are not unique. So we choose them
such that the order O is preserved.

5.2.4. Set Bijections THAT SORT THE VECTOR-WEIGHTS

Here we show that there exists a set bijection whose in-
terpretation is the set of permutations that sort the vector-
weights. Let Nk be the set of first k natural numbers. Let
DP

uv , { all permutations l : Nk → Σa | l sorts WP(u,v)}
be defined for each (u, v) ∈ E′. So, WPs (u,v) =<
WP(u, l(1), v), . . . ,WP(u, l(k), v) > and WP(u, l(1), v) ≤
WP(u, l(2), v) ≤ . . . ≤ WP(u, l(k), v) . Clearly, Nk can be
partitioned into Uuv

Nk
= {N1

k ,N
2
k , . . . ,N

j
k} such that, ∀t ∈ N

y
k ,

WP(u, l(t), v) has the same value for each y = 1, 2, . . . , j
and if t ∈ N

y
k and t′ ∈ N

y+1
k then WP(u, l(t), v) <

WP(u, l(t′), v). This partition induces a corresponding par-
tition Uuv

Σa
= {Σ1

a ,Σ
2
a , . . . ,Σ

j
a} where Σi

a = {l(t) | t ∈ N
i
k}.

Since, each l sorts WP(u,v), they satisfy the property that
l(x ∈ N

i
k) ∈ Σi

a. Therefore, there exists a set bijection
QP

uv : Uuv
Nk
→ Uuv

Σa
such that, I(QP

uv) = DP
uv.

Using a similar procedure, we can show that there exists set
bijection QR

uv : Uuv
Nk
→ Uuv

Σa
whose interpretation is the set

of permutations that sort WR(u,v).
Let Quv = QP

uv ∩ QR
uv. If Quv = ∅, then there doesn’t exist

an automorphism for the MDPM.

5.2.5. WEIGHTED DIGRAPH

Now we define the weighted digraph WGM =<

V,E′,W′ > as follows:

W′ : E′ → R such that W′(u, v) = m(WPs (u, v).
WRs (u, v)) where m is a bijection from R

2k → R

and . denotes concatenation

Algorithm 1 Construction
1: GivenM = 〈S,A,Ψ,P,R〉
2: Let SOLN be an empty set
3: Construct the pseudograph GM =< Σa,V,E,WP,WR > as

defined in Section 5.2
4: Construct the vector-weighted digraph VWGM =<

V,E′,WP,WR > as defined in Section 5.2.2
5: Construct the sorted vector-weighted digraph SVWGM =<

V,E′,WPs ,WRs > as defined in Section 5.2.3
6: for each (u, v) ∈ E′ do
7: Compute QP

uv and QR
uv by finding the partition of Nk as

described in Section 5.2.4
8: Quv ← QP

uv ∩QR
uv

9: if QP
uv ∩QR

uv does not exist then
10: exit
11: end if
12: end for
13: Construct the weighted digraph WGM =< V,E′,W′ > using

m as described in Section 5.2.5
14: F ← DGEN(WGM) where F is the set of generators of

AutWGM
15: for each f ∈ F do
16: for each (u, v) ∈ E′ do
17: Guv ← Q f (u) f (v) �Q−1

uv
18: end for
19: Let Ĥ f be an empty set
20: for each u ∈ V do
21: Gu ← Guv from some v ∈ V
22: for each v ∈ V do
23: Gu ← Gu ∩ Guv
24: end for
25: Add Gu to Ĥ f

26: end for
27: Add < f , Ĥ f > to SOLN
28: end for

On the Hardness of Finding Symmetries in MDPs

5.2.6. CONSTRUCTION

The procedure for finding symmetries of an MDP M is
given in Algorithm 1.

The complexity of the algorithm is as follows. The con-
struction steps in lines 3 to 5, are at most polynomial in
|E|. Using a constant access time data structure like a hash-
table, QP

uv and QR
uv can be constructed in O(|Euv|) time.The

intersection takes O(|Euv|2) time. Since this runs for |E′| it-
erations, computation of Quv is at most polynomial in |E|.
Since m is known, the construction of weighted digraph in
line 13, is polynomial in |E|. With the use of procedures that
return at most |V| automorphisms of AutWGM (Mathon,
1979), the construction of Gu for each f , from lines 15 to
26, runs for at most |V| iterations.

The most expensive part of the loop from lines 20 to 26
is the computation of |V|2 intersections. But this is still
polynomial in |V||E| time. Hence the algorithm takes poly-
nomially more time than the solution time of DGEN. Also
to extract a solution from SOLN, we need to extract |V|
SDAR functions from Ĥ f for each f , which takes |Euv| time
if we use a constant access time data structure. So extrac-
tion of a solution takes O(|V|2|E|) which is still polynomial
in |V||E|. While one can intuitively see that the reduction
is indeed polynomial time, the proof is presented in an as-
sociated technical report (Narayanamurthy & Ravindran,
2008), due to lack of space.

5.3. Significance

The above result is significant both theoretically and practi-
cally. Practically speaking, the reduction to Graph Isomor-
phism allows us to use any of the numerous off-the-shelf
Graph Isomorphism solvers to find symmetries on MDPs.
In fact, we use NAutY - No Automorphisms, Yes?, the
best Graph Isomorphism solver currently available (Skiena,
1997) to find out symmetries in MDPs. NAutY solves
AGEN(G). It uses backtracking and a refinement proce-
dure to find the canonical labeling. If two different label-
ings lead to the same graph, then an automorphism can be
found using these labelings (McKay, 1981). In the worst
case it can take exponential time. So it allows the use of
a variety of vertex invariants, which act like heuristics, to
solve harder problems. However, for random graphs with n
vertices and edge probability 0.5, average execution times
for large n are about n2 nanosecs.We use NAutY in the
fourteenth line in the construction, where we need to solve
DGEN(G). We first convert the weighted digraph into an
unweighted digraph using standard procedure. We then use
NAutY to find the generators of the automorphism group of
the so found digraph. From these we extract generators of
AutWG as per the above procedure. We present some re-
sults in Section 6.

6. Results

The experiments were run on the following two domains.
We describe results per domain.

6.1. Probabilistic GridWorld

The domain is an N × N GridWorld with four probabilis-
tic actions of going UP, DOWN, RIGHT and LEFT having
a 90% success probability. The initial state was (0,0) and
the goal states were {(0,N − 1), (N − 1, 0)}. We used Al-
gorithm 1 to find the symmetries with NAutY being used
as the DGEN solver. We then used the symmetries to find
the partition ofΨ. We were able to find the partition corre-
sponding to the symmetry group, that is, for a grid of size
M ×N, states (x,y), (y,x), (M-1-x,N-1-y) and (N-1,M-1-x)
are equivalent. We present the time taken by the algorithm
for GridWorlds of different sizes.

20 22 24 26 28 30 32 34 36 38
0

5

10

15

20

25

30

35

40

45

Size of the Gridworld

T
im

e
 i
n

 s
e

c

Value Iteration with Explicit Model Minimization on the Probabilistic GridWorld

No Reduction

Without 2−reduction time

Without 4−reduction time

With 2−reduction time

With 4−reduction time

Nauty + 4−reduction time

Figure 1. Average running times of the value iteration algorithm
with explicit model minimization on Probabilistic GridWorld vs
size of the GridWorld. Each of the 3 sets should be compared with
the graph for no reduction. Curves in a set represent different
degrees of symmetry. Each set shows the time reduction with
reduced model usage. First one discounts the time taken to find
symmetries and for reduction. The next set includes the time for
reduction but discounts time taken to find symmetries. The last
one includes both the time taken to find symmetries using NAutY
and time for reduction.

To complete the end-to-end approach, we ran the G-
reduced image algorithm, presented in (Ravindran, 2004),
to find the reduced image and ran the Value Iteration algo-
rithm on the reduced image. To show the efficiency of re-
duction, we show the time taken for reduction and solution
separately. We also present the case of a handcrafted 2-
folded symmetry which is used with the G-reduced image
algorithm and reduced model is used with Value Iteration.

From Figure 1 it is evident that the reduced model con-

On the Hardness of Finding Symmetries in MDPs

struction is efficient and adds little overhead. However, the
results of the end-to-end approach show a significant over-
head due to symmetry finding. It cuts the saving by almost
half. Still the results are significant because they double
the size of the largest GridWorld that can be solved in some
given time.

6.2. GridWorld Soccer

The domain is a soccer-inspired grid domain. It is a slightly
modified version of that described in (Bowling, 2003). We
first describe the original version of the domain and then
state the modification.

It is an M × N grid with two agents. One is denoted the
attacker (A) who holds the ball and the other as the de-
fender (B) who tries to snatch the ball from the attacker.
The center lines/grids(depending on whether M and N are
even or odd) for both x-axis and y-axis are chosen natu-
rally. The state is defined by the non-identical positions of
the attacker and the defender. This defines the state space
with (MN)2 − (MN) states. The actions are movements
in the four compass directions: N, E, W, S and the hold
action H. It is a single player game, in that, only the at-
tacker chooses actions deliberately while the defender ex-
ecutes random actions. The action chosen by the attacker
and the random action of the defender are executed in ran-
dom order, which determines the next state. However if
the defender tries to move into the attacker’s location then
the state is unchanged and if the attacker tries to move into
the defender’s location, the game is reset to the initial state
which is shown in Figure 2. The right hand section of the
grid is the attacker’s half and the left hand section that of
the defender. The goal is chosen to be situated beyond the
first column of grids occupying one grid on each side of
the y-axis central line/grid. A W action from the squares
in front of the goal state leads to a goal with a reward of 1
and to the end of an episode. Everywhere else the reward
is 0. A 5 × 4 domain is shown in Figure 2.

Intuitively, the domain seems symmetric around the y-axis
center line. However, the results of using Algorithm 1 on
this domain showed us that the domain is not symmetric
due to the existence of the reset action when the attacker
tries to move into the defender’s position. So we modified
the domain to have symmetric reset, that is, reset happens
to the initial state and its symmetric state around the y-axis
center line with equal probability. This makes the domain
symmetric as per intuition, which the algorithm confirms.

Interestingly, the algorithm also finds that the existence of
the hold action adds further symmetry. The grids along the
border of the domain act as walls. For example, the north-
ern wall stops the N action leaving the state unchanged
which is the same result if the agent were to execute a H ac-
tion. These additional symmetries which we did not think

G
O

A
L AB

G
O

A
L

G
O

A
L

G
O

A
L

G
O

A
L

WEST

A

AA A

B

B

B

B

0.7

0.1

0.1 0.1

Figure 2. Single Player grid soccer where agent B selects it ac-
tions randomly. The initial state is shown on the left and an ex-
ample of transitions and associated probabilities are given for a
particular state and action on the right. Notice that fifty percent
of the time A’s actions are executed first causing it to lose the ball
and the game reset to the initial state. In addition, if B selects H
or E it does not move and so A still loses the ball and returns to
the initial state. The other outcomes are equiprobable.

of before running algorithm were found by the algorithm.
This suggests that there might exist complicated symme-
tries that will be discovered by the algorithm, which are
hard to find, even upon a close examination. Also in many
cases, symmetries are size invariant. So we can use the al-
gorithm on a relatively smaller version of the domain and
find symmetries which might still hold on the larger ver-
sion.

We present the time taken by the algorithm for different
sizes. An increment of one here means an increase of one
along both axes. The presence of two agents, blows up the
state space very rapidly and we hit the limit on the order
of the graph imposed by NAutY very soon (for a 11 × 10
grid).To present similar graphs as in the probabilistic Grid-
World case, we use the explicit model minimization ap-
proach with Value Iteration. The results are presented in
Figure 3.

In this case, we find that the overheads due to the con-
struction and the G-reduced image algorithm is negligible.
Though efficiency of the G-reduced image algorithm is ex-
pected, the efficiency of the construction can be possibly
because of the structure of the domain yielding an easy
graph to find automorphisms on.

7. Conclusion

In this work, we have provided a constructive proof for the
Isomorphism Completeness of the problem of finding sym-
metries. We have also proposed the use of this construc-
tive proof along with an efficient minimization algorithm to
solve an MDP using symmetries and demonstrated it em-
pirically. As part of future work, we are looking at adapting
approximation algorithms for finding graph isomorphisms
to finding approximate symmetries in MDPs.

On the Hardness of Finding Symmetries in MDPs

1 1.5 2 2.5 3 3.5 4
0

2000

4000

6000

8000

10000

12000

Size of the Gridworld

T
im

e
 in

 m
ill

i m
in

s

Value Iteration with Explicit Model Minimization on the GridWorld Soccer domain

No Reduction
Without 2−reduction time
With 2−reduction time
Nauty + 2−reduction time

Figure 3. Average running times of the value iteration algorithm
with explicit model minimization on GridWorld Soccer domain vs
size of the domain. Size of one represents the 5 × 4 grid. There-
after an increment of one means an increment of one along both
axes. Each graph should be compared with the graph for no re-
duction. The other graphs show the time reduction with reduced
model usage. First one discounts the time taken to find symme-
tries and for reduction. The next one includes the time for reduc-
tion but discounts time taken to find symmetries. The last one
includes both the time taken to find symmetries using NAutY and
time for reduction.

Acknowledgements

We would like to thank the reviewers for their valuable
comments and inputs. We would also like to thank Google
Research for supporting Dr. Ravindran’s participation in
the conference.

References
Amarel, S. (1968). On representations of problems of rea-

soning about actions. In D. Michie (Ed.), Machine intelli-
gence 3, vol. 3, 131–171. Amsterdam, London, New York:
Elsevier/North-Holland. Amarel, S.

Booth, K. S., & Colbourn, C. J. (1977). Problems polynomially
equivalent to graph isomorphism (Technical Report). Univer-
sity of Waterloo.

Bowling, M. (2003). Multiagent learning in the presence of
agents with limitations. Doctoral dissertation, Carnegie Mellon
University.

Crawford, J. (1992). A theoretical analysis of reasoning by sym-
metry in first-order logic.

Dean, T., & Givan, R. (1997). Model minimization in markov
decision processes. AAAI/IAAI (pp. 106–111).

Flener, P., Frisch, A., Hnich, B., Kiziltan, Z., Miguel, I., Pearson,
J., & Walsh, T. (2002). Breaking row and column symmetries
in matrix models.

Givan, R., Dean, T., & Greig, M. (2003). Equivalence notions and
model minimization in markov decision processes. Artificial
Intelligence, 147, 163–223.

Hartmanis, J. (1966). Algebraic structure theory of sequential
machines (prentice-hall international series in applied mathe-
matics). Upper Saddle River, NJ, USA: Prentice-Hall, Inc.

Lee, D., & Yannakakis, M. (1992). Online minimization of tran-
sition systems (extended abstract). STOC ’92: Proceedings of
the twenty-fourth annual ACM symposium on Theory of com-
puting (pp. 264–274). New York, NY, USA: ACM Press.

Manning, J. B. (1990). Geometric symmetry in graphs. Doctoral
dissertation, Purdue University.

Mathon, R. (1979). A note on the graph isomorphism counting
problem. Information Processing Letters, 8, 131–132.

McKay, B. D. (1981). Practical graph isomorphism. Congressus
Numerantium, 30, 45–87.

Miller, G. L. (1977). Graph isomorphism, general remarks. STOC
’77: Proceedings of the ninth annual ACM symposium on The-
ory of computing (pp. 143–150). New York, NY, USA: ACM
Press.

Narayanamurthy, S. M., & Ravindran, B. (2008). On the hardness
of finding symmetries in markov decision processes (Technical
Report IITMCSETR-01-08). Indian Institute of Technology,
Madras.

Ravindran, B. (2004). An algebraic approach to abstraction in
reinforcement learning. Doctoral dissertation, Department of
Computer Science, University of Massachusetts Amherst.

Read, R. C., & Corneil, D. G. (1977). The graph isomorphism
disease. Journal of Graph Theory I, 339–363.

Skiena, S. (1997). The stony brook algorithm repository.

Zinkevich, M., & Balch, T. (2001). Symmetry in markov decision
processes and its implications for single agent and multiagent
learning. Proceedings of the ICML-01 (pp. 632–640). Morgan
Kaufmann.

